A347842 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_4)^n.
1, 1, 6, 148, 14808, 5942608, 9546508128, 61355108818240, 1577381936031968640, 162213856617581098030336, 66726795842176170072717129216, 109792555585903911536355551233758208, 722612693482570097701467493432061846673408, 19023844570798442009810731239392846416136188284928
Offset: 0
Keywords
Examples
a(3) = 148 = 1 * 1 + 21 * 2 + 105 * 1, counting: the unrefined chain 0 < (F_4)^3; 21 chains 0 < V < (F_4)^3, with dim(V) = 1; another 21 chains 0 < V < (F_4)^3, with dim(V) = 2; and 105 chains 0 < V_1 < V_2 < (F_4)^3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..58 (terms n = 1..40 from Álvar Ibeas)
Programs
-
Maple
b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1, b(u+o, 0$2), 0)+add(4^(u+j-1)*b(o-j, u+j-1, 1), j=1..o)) end: a:= n-> b(n, 0$2): seq(a(n), n=0..14); # Alois P. Heinz, Feb 21 2025
Formula
a(n) = Sum_{L partition of n} A347487(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.
a(n) = Sum_{k=0..binomial(n,2)} 4^k * A381299(n,k). - Alois P. Heinz, Feb 21 2025
Extensions
a(0)=1 prepended by Alois P. Heinz, Feb 21 2025