A347857 a(n) = (6*n)!/((3*n)!*(2*n)!) * (3*n/2)!/(5*n/2)!.
1, 24, 1386, 91392, 6374082, 458625024, 33660501840, 2504739913728, 188276393811330, 14262358156247040, 1087036407409838886, 83262603737872465920, 6403774152656100209808, 494217792537649867653120
Offset: 0
Examples
Congruence: a(11) - a(1) = 83262603737872465920 - 24 = (2^3)*3*(11^3)*2369413*1100068993 == 0 (mod 11^3).
Links
- J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., Vol. 79, Issue 2 (2009), 422-444.
- F. Rodriguez-Villegas, Integral ratios of factorials and algebraic hypergeometric functions, arXiv:math/0701362 [math.NT], 2007.
Programs
-
Maple
seq( (6*n)!/((3*n)!*(2*n)!) * GAMMA(1+3*n/2)/GAMMA(1+5*n/2), n = 0..12);
-
Python
from math import factorial from sympy import factorial2 def A347857(n): return int((factorial(6*n)*factorial2(3*n)<
Chai Wah Wu, Aug 10 2023
Formula
a(n) = binomial(6*n,3*n)*binomial(3*n,2*n)/binomial(5*n/2,n).
a(2*n) = A295435(n).
a(2*n) = (216/5)*(3*n-1)*(3*n-2)*(12*n-1)*(12*n-5)*(12*n-7)*(12*n-11)/(n*(2*n-1)*(5*n-1)*(5*n-2)*(5*n-3)*(5*n-4))*a(2*n-2);
a(2*n+1) = (864/5)*(36*n^2-1)*(144*n^2-1)*(144*n^2-25)/( n*(2*n+1)*(100*n^2-1)*(100*n^2-9))*a(2*n-1).
Asymptotics: a(n) ~ sqrt(3/(10*Pi*n))* 32^n * 3^(9*n/2)/5^(5*n/2) as n -> infinity.
O.g.f. A(x) = hypergeom([1/12, 1/3, 5/12, 7/12, 2/3, 11/12], [1/5, 2/5, 1/2, 3/5, 4/5], (2^10*3^9/5^5)*x^2) + 24*x*hypergeom([7/12, 5/6, 11/12, 13/12, 7/6, 17/12], [7/10, 9/10, 11/10, 13/10, 3/2], (2^10*3^9/5^5)*x^2) is conjectured to be algebraic over Q(x).
Conjectural congruences: a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k.
Comments