cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347861 a(n) = A000032(n)*A000032(n+1) mod A000032(n+2).

Original entry on oeis.org

2, 3, 5, 6, 5, 24, 5, 71, 5, 194, 5, 516, 5, 1359, 5, 3566, 5, 9344, 5, 24471, 5, 64074, 5, 167756, 5, 439199, 5, 1149846, 5, 3010344, 5, 7881191, 5, 20633234, 5, 54018516, 5, 141422319, 5, 370248446, 5, 969323024, 5, 2537720631, 5, 6643838874, 5, 17393795996, 5, 45537549119, 5, 119218851366, 5
Offset: 0

Views

Author

J. M. Bergot and Robert Israel, Jan 23 2022

Keywords

Comments

The analogous sequence for Fibonacci numbers instead of Lucas numbers is A333599.

Examples

			a(3) = A000032(3)*A000032(4) mod A000032(5) = 4*7 mod 11 = 6.
		

Crossrefs

Programs

  • Maple
    L:= n -> combinat:-fibonacci(n-1)+combinat:-fibonacci(n+1):
    f:= n -> L(n)*L(n+1) mod L(n+2):
    map(f, [$0..40]);
  • Mathematica
    With[{L = LucasL}, Table[Mod[L[n]*L[n + 1], L[n + 2]], {n, 0, 50}]] (* Amiram Eldar, Jan 24 2022 *)
  • PARI
    L(n) = fibonacci(n+1)+fibonacci(n-1);
    a(n) = L(n)*L(n+1) % L(n+2); \\ Michel Marcus, Jan 24 2022

Formula

G.f.: 4*x - 3 - (x + 3)/(2*(x^2 + x - 1)) - (x - 3)/(2*(x^2 - x - 1)) + 5/(x + 1).
a(n) = -a(n-1) + 3*a(n-2) + 3*a(n-3) - a(n-4) - a(n-5) for n >= 7.
a(n) = 5 for even n >= 2.
a(n) = A000032(n+2)-5 for odd n >= 3.