A347865 Number of ways to write n as w^2 + 2*x^2 + y^4 + 3*z^4, where w,x,y,z are nonnegative integers.
1, 2, 2, 3, 4, 3, 3, 3, 2, 4, 3, 2, 5, 3, 1, 2, 3, 3, 4, 6, 5, 4, 6, 3, 2, 6, 2, 5, 7, 1, 3, 3, 2, 4, 5, 4, 6, 7, 4, 3, 3, 4, 2, 4, 4, 2, 3, 2, 4, 6, 5, 7, 10, 4, 7, 7, 1, 9, 6, 3, 7, 3, 2, 2, 4, 5, 7, 11, 6, 4, 9, 3, 5, 11, 2, 7, 10, 2, 2, 2, 4, 8, 12, 7, 9, 10, 7, 6, 5, 7, 6, 7, 8, 5, 1, 2, 4, 10, 7, 11, 15
Offset: 0
Keywords
Examples
a(14) = 1 with 14 = 3^2 + 2*1^2 + 0^4 + 3*1^4. a(158) = 1 with 158 = 11^2 + 2*3^2 + 2^4 + 3*1^4. a(589) = 1 with 589 = 14^2 + 2*14^2 + 1^4 + 3*0^4. a(1214) = 1 with 1214 = 27^2 + 2*11^2 + 0^4 + 3*3^4. a(1454) = 1 with 1454 = 27^2 + 2*19^2 + 0^4 + 3*1^4. a(1709) = 1 with 1709 = 29^2 + 2*0^2 + 5^4 + 3*3^4.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34 (2017), no.2, 97-120.
- Zhi-Wei Sun, Sums of four rational squares with certain restrictions, arXiv:2010.05775 [math.NT], 2020-2022.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[SQ[n-3x^4-y^4-2z^2],r=r+1],{x,0,(n/3)^(1/4)},{y,0,(n-3x^4)^(1/4)}, {z,0,Sqrt[(n-3x^4-y^4)/2]}];tab=Append[tab,r],{n,0,100}];Print[tab]
Comments