A350857 Number of ways to write n as 2*w^4 + x^4 + y^2 + z^2, where w,x,y,z are nonnegative integers with w or x a square.
1, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 1, 1, 3, 3, 5, 4, 5, 3, 2, 2, 1, 3, 5, 4, 4, 3, 1, 2, 4, 4, 6, 4, 5, 5, 4, 2, 3, 6, 5, 5, 2, 3, 2, 2, 3, 3, 7, 4, 7, 6, 3, 3, 2, 3, 5, 3, 1, 4, 2, 2, 3, 5, 6, 5, 7, 4, 3, 2, 2, 4, 5, 3, 3, 3, 1, 1, 2, 6, 8, 9, 5, 7, 5, 3, 4, 3, 6, 6, 4, 3, 2, 0, 3, 6, 7, 5, 7
Offset: 0
Keywords
Examples
a(24) = 1 with 24 = 2*0^4 + 2^4 + 2^2 + 2^2 and 0 = 0^2. a(1151) = 1 with 1151 = 2*3^4 + 4^4 + 2^2 + 27^2 and 4 = 2^2. a(6456) = 1 with 6456 = 2*1^4 + 3^4 + 17^2 + 78^2 and 1 = 1^2. a(20319) = 1 with 20319 = 2*5^4 + 0^4 + 5^2 + 138^2 and 0 = 0^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34 (2017), no.2, 97-120.
- Zhi-Wei Sun, Sums of four rational squares with certain restrictions, arXiv:2010.05775 [math.NT], 2020-2022.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[SQ[n-2w^4-x^4-y^2]&&(SQ[w]||SQ[x]),r=r+1],{w,0,(n/2)^(1/4)},{x,0,(n-2w^4)^(1/4)},{y,0,Sqrt[(n-2w^4-x^4)/2]}];tab=Append[tab,r],{n,0,100}];Print[tab]
Comments