A346643 Number of ways to write n as w^2 + 2*x^2 + 3*y^4 + 4*z^4, where w,x,y,z are nonnegative integers.
1, 1, 1, 2, 3, 2, 3, 3, 3, 4, 2, 3, 4, 3, 1, 3, 4, 1, 3, 3, 2, 3, 4, 2, 2, 4, 2, 3, 2, 2, 2, 3, 2, 2, 3, 1, 5, 3, 2, 3, 4, 3, 1, 3, 2, 2, 1, 2, 4, 2, 3, 5, 4, 3, 7, 4, 3, 7, 5, 2, 4, 6, 1, 2, 6, 2, 6, 5, 5, 4, 8, 5, 5, 7, 2, 8, 8, 2, 2, 7, 4, 6, 5, 4, 7, 8, 7, 1, 7, 6, 3, 5, 4, 3, 2, 2, 5, 4, 3, 7, 8
Offset: 0
Keywords
Examples
a(46) = 1 with 46 = 5^2 + 2*3^2 + 3*1^4 + 4*0^4. a(119) = 1 with 119 = 7^2 + 2*3^2 + 3*2^4 + 4*1^4. a(398) = 1 with 398 = 13^2 + 2*9^2 + 3*1^4 + 4*2^4. a(545) = 1 with 545 = 19^2 + 2*6^2 + 3*2^4 + 4*2^4. a(1037) = 1 with 1037 = 31^2 + 2*6^2 + 3*0^4 + 4*1^4. a(1437) = 1 with 1437 = 9^2 + 2*26^2 + 3*0^4 + 4*1^4. a(4254) = 1 with 4254 = 45^2 + 2*31^2 + 3*3^4 + 4*2^4.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34 (2017), no.2, 97-120.
- Zhi-Wei Sun, Sums of four rational squares with certain restrictions, arXiv:2010.05775 [math.NT], 2020-2022.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[SQ[n-4x^4-3y^4-2z^2],r=r+1],{x,0,(n/4)^(1/4)},{y,0,((n-4x^4)/3)^(1/4)},{z,0,Sqrt[(n-4x^4-3y^4)/2]}];tab=Append[tab,r],{n,0,100}];Print[tab]
Comments