cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347874 Odd composites for which A342926(n) is even and A342926(2*n) is a multiple of 3.

Original entry on oeis.org

45, 153, 261, 325, 369, 405, 441, 477, 801, 909, 925, 1017, 1233, 1341, 1377, 1521, 1525, 1557, 1573, 1773, 1825, 2097, 2205, 2313, 2349, 2401, 2421, 2425, 2529, 2637, 2725, 2853, 3177, 3249, 3321, 3501, 3609, 3645, 3757, 3825, 3925, 4041, 4149, 4293, 4477, 4525, 4581, 4689, 4825, 5013, 5121, 5337, 5445, 5553, 5725
Offset: 1

Views

Author

Antti Karttunen, Sep 18 2021

Keywords

Comments

Numbers k for which A347871(k) = 0 and A347883(2*k) = 0.
This is not a subsequence of A228058. The terms that do not occur there: 441, 1521, 2401, 3249, 8649, 16641, 28561, 35721, etc., seem all to be squares. Terms of A228058 missing from this sequence are: 117, 245, 333, 425, 549, 605, 637, 657, 725, etc. (See A351574.) Terms that are also in A228058 are given in A386429.

Crossrefs

Intersection of A347872 and A351562.

Programs

  • Mathematica
    ad[1] = 0; ad[n_] := n * Total@(Last[#]/First[#]& /@ FactorInteger[n]); f[n_] := ad[DivisorSigma[1, n]] - n; Select[Range[1, 5725, 2], CompositeQ[#] && EvenQ[f[#]] && Divisible[f[2*#], 3] &] (* Amiram Eldar, Sep 18 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A342926(n) = (A003415(sigma(n))-n);
    isA347874(n) = ((n%2)&&!isprime(n)&&!(A342926(n)%2)&&!(A342926(2*n)%3));