A347882 Odd numbers k for which A003415(sigma(k^2))-(k^2) is strictly positive and a multiple of 3. Here A003415 is the arithmetic derivative.
273, 399, 651, 741, 777, 819, 903, 1197, 1209, 1281, 1365, 1407, 1443, 1533, 1659, 1677, 1767, 1925, 1953, 1995, 2035, 2037, 2109, 2163, 2223, 2289, 2331, 2379, 2451, 2457, 2613, 2667, 2709, 2847, 2919, 3003, 3081, 3171, 3255, 3297, 3423, 3441, 3477, 3591, 3627, 3685, 3705, 3783, 3801, 3819, 3843, 3885, 3999, 4017
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Mathematica
ad[1] = 0; ad[n_] := n * Total@(Last[#]/First[#]& /@ FactorInteger[n]); Select[Range[1, 4000, 2], (d = ad[DivisorSigma[1, #^2]] - #^2) > 0 && Divisible[d, 3] &] (* Amiram Eldar, Sep 18 2021 *)
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); isA347882(n) = if(!(n%2),0,my(u=(A003415(sigma(n^2))-(n^2))); ((u>0)&&!(u%3)));
Comments