A347887 Odd numbers k for which A003415(sigma(k^2))-(k^2) is strictly positive and even. Here A003415 is the arithmetic derivative.
201, 231, 237, 259, 273, 315, 333, 399, 429, 455, 483, 525, 555, 585, 627, 651, 665, 741, 763, 855, 903, 975, 1057, 1071, 1085, 1113, 1209, 1235, 1351, 1395, 1407, 1505, 1533, 1635, 1659, 1677, 1767, 1785, 1935, 2037, 2079, 2163, 2211, 2265, 2317, 2331, 2345, 2451, 2457, 2479, 2541, 2555, 2583, 2607, 2611, 2613
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
ad[1] = 0; ad[n_] := n * Total@(Last[#]/First[#]& /@ FactorInteger[n]); Select[Range[1, 3000, 2], (d = ad[DivisorSigma[1, #^2]] - #^2) > 0 && EvenQ[d] &] (* Amiram Eldar, Sep 19 2021 *)
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); isA347887(n) = if(!(n%2),0,my(u=(A003415(sigma(n^2))-(n^2))); ((u>0)&&!(u%2)));
Comments