A347889 Numbers k such that sigma(k) > 2*k and A003415(sigma(k)) < k, where A003415 is the arithmetic derivative, and sigma is the sum of divisors function.
18, 36, 100, 144, 324, 400, 576, 784, 900, 1296, 1458, 1600, 1936, 2304, 2500, 2704, 2916, 3136, 3600, 4624, 5184, 5202, 5776, 6400, 7744, 8464, 9216, 9604, 10000, 10404, 10816, 11664, 12100, 13122, 13456, 14400, 15376, 17424, 18496, 19044, 23104, 25600, 26244, 28900, 30258, 30276, 30976, 32400, 33856, 36864, 38416
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
ad[1] = 0; ad[n_] := n * Total@(Last[#]/First[#]& /@ FactorInteger[n]); Select[Range[1, 40000], DivisorSigma[1, #] > 2*# && ad[DivisorSigma[1, #]] < # &] (* Amiram Eldar, Sep 19 2021 *)
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); isA347889(n) = ((A003415(sigma(n))
(2*n)));
Comments