cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A347905 Array read by antidiagonals, m, n >= 1: T(m,n) is the position of the first prime (after the two initial terms) in the Fibonacci-like sequence with initial terms m and n, or 0 if no such prime exists.

Original entry on oeis.org

2, 2, 2, 3, 0, 3, 2, 2, 2, 2, 3, 0, 0, 0, 3, 2, 2, 2, 2, 2, 2, 4, 0, 3, 0, 3, 0, 4, 3, 5, 0, 4, 3, 0, 3, 4, 3, 0, 3, 0, 0, 0, 3, 0, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 0, 6, 0, 3, 0, 0, 0, 3, 0, 3, 0, 4
Offset: 1

Views

Author

Pontus von Brömssen, Sep 18 2021

Keywords

Comments

There are cases where T(m,n) = 0 even when m and n are coprime; see A082411, A083104, A083105, A083216, and A221286.
The largest value of T(m,n) for m, n <= 5000 is T(1591,300) = 17262.

Examples

			Array begins:
  m\n|  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
  ---+------------------------------------------------------------
   1 |  2  2  3  2  3  2  4  3  3  2  3  2  4  3  3  2  4  2  4  3
   2 |  2  0  2  0  2  0  5  0  2  0  2  0  4  0  2  0  2  0  4  0
   3 |  3  2  0  2  3  0  3  2  0  2  6  0  3  2  0  2  3  0  3  2
   4 |  2  0  2  0  4  0  2  0  2  0  4  0  2  0  2  0  4  0  2  0
   5 |  3  2  3  3  0  2  3  2  3  0  4  2  3  2  0  3  4  2  3  0
   6 |  2  0  0  0  2  0  2  0  0  0  2  0  2  0  0  0  2  0  5  0
   7 |  4  3  3  2  3  2  0  3  4  2  3  2  4  0  3  2  3  3  4  3
   8 |  4  0  2  0  2  0  4  0  2  0  2  0  5  0  2  0  4  0  4  0
   9 |  3  2  0  2  3  0  3  2  0  2  3  0  6  2  0  3  3  0  3  2
  10 |  2  0  2  0  0  0  2  0  2  0  4  0  2  0  0  0  4  0  2  0
  11 |  3  2  3  3  4  2  4  2  3  3  0  2  3  5  3  3  4  2  4  2
  12 |  2  0  0  0  2  0  2  0  0  0  2  0  5  0  0  0  2  0  2  0
  13 |  4  3  3  2  3  2  4  3  3  2  4  3  0  3  3  2  3  2  4  3
  14 |  4  0  2  0  2  0  0  0  2  0  4  0  4  0  2  0  2  0  5  0
  15 |  3  2  0  2  0  0  3  2  0  0  3  0  3  2  0  2  6  0  3  0
  16 |  2  0  2  0  4  0  2  0  4  0  5  0  2  0  2  0  4  0  4  0
  17 |  3  2  3  5 10  2  3  6  4  3  4  2  3  2  3  5  0  3  7  2
  18 |  2  0  0  0  2  0  5  0  0  0  2  0  2  0  0  0  5  0  2  0
  19 |  4  3  4  2  3  3  4  5  3  2  3  2  6  3  4  5  3  2  0  3
  20 |  4  0  2  0  0  0  4  0  2  0  2  0  4  0  0  0  2  0  4  0
T(2,7) = 5, because 5 is the smallest k >= 2 for which A022113(k) is prime.
		

Crossrefs

Programs

  • Python
    # Note that in the (rare) case when m and n are coprime but there are no primes in the Fibonacci-like sequence, this function will go into an infinite loop.
    from sympy import isprime,gcd
    def A347905(m,n):
        if gcd(m,n) != 1:
            return 0
        m,n = n,m+n
        k=2
        while not isprime(n):
            m,n = n,m+n
            k += 1
        return k

Formula

T(m,n) = 0 if m and n have a common factor.
T(m,n) = T(n,m+n) + 1 if m+n is not prime, otherwise T(m,n) = 2.
Showing 1-1 of 1 results.