A347906 Numbers k such that 2^(2*k-1) == 1 (mod k).
1, 80519, 107663, 1284113, 1510313, 3933023, 4557713, 24849833, 71871113, 80646143, 98058097, 104832833, 106694033, 146987033, 168204191, 188997463, 205428713, 332693873, 333681761, 336327863, 380284847, 533039513, 552913169, 711999113, 725943719, 805031663, 1000519033, 1069441313, 1476327353, 1610020913
Offset: 1
Keywords
Examples
80519 is a term since 80519 divides 2^161037 - 1 (the multiplicative order of 2 modulo 80519 is 261, which is a divisor of 161037). Note that 2 * 80519 = 161038 = A006935(2) is the smallest even pseudoprime to base 2.
Links
- Jianing Song, Table of n, a(n) for n = 1..1319 (contains all terms below 10^15; based on Max Alekseyev's b-file for A006935)
Programs
-
PARI
isA347906(k) = if(k%2 && !isprime(k), Mod(2, k)^(2*k-1)==1, 0)
Formula
a(n) = A006935(n)/2.
Comments