cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A130421 Numbers k such that 4^k == 2 (mod k).

Original entry on oeis.org

1, 2, 14, 1022, 20066, 80519, 107663, 485918, 1284113, 1510313, 2531678, 3677198, 3933023, 4557713, 8277458, 8893262, 21122318, 24849833, 26358638, 39852014, 42448478, 71871113, 76712318, 80646143, 98058097, 104832833, 106694033, 131492498, 144322478, 146987033, 164360606, 168204191, 175126478, 176647378, 188997463, 196705598
Offset: 1

Views

Author

Jon E. Schoenfield, May 26 2007

Keywords

Comments

Some terms above 10^15: 26435035805519327, 158975398896178078, 64044049390757098943, 1063423126446412987081943, 1091220919655042176978844783, 81074850280355100090334498663, 6317483763950169936179578094903, 5672799393875320397186007124651847, 170923900137537174138295268515194974, 195746953975871672436191077726091399305155458, 325665752547333314939363628501536024940097079718953, 953533053776414279913696071891872697927468471633033, 85791212788381063775490416118630897060666265030605503, 334519297382630382793758729321508383611586565722054114034741260213364710519401967713. - Max Alekseyev, Jun 18 2014

Crossrefs

Cf. A006935 (odd terms times 2), A130422, A347906 (odd terms), A347908 (even terms).

Programs

  • Mathematica
    Join[{1,2},Select[Range[107000000],PowerMod[4,#,#]==2&]] (* Harvey P. Dale, Jun 13 2013 *)

Extensions

Terms a(28) onward from Max Alekseyev, Jun 18 2014
b-file corrected by Max Alekseyev, Oct 09 2016

A347908 Even numbers k such that 2^(2*k) == 2 (mod k).

Original entry on oeis.org

2, 14, 1022, 20066, 485918, 2531678, 3677198, 8277458, 8893262, 21122318, 26358638, 39852014, 42448478, 76712318, 131492498, 144322478, 164360606, 175126478, 176647378, 196705598, 249126626, 306789074, 317051378, 438023138, 497041538, 696970718, 996520658
Offset: 1

Views

Author

Jianing Song, Sep 18 2021

Keywords

Comments

Numbers of the form 2*t where 2^(4*t-1) == 1 (mod t).
Even terms in A130421. Complement of A347906 in A130421.
If k > 14 is a term, then k/2 must be composite, since for odd primes p we have 2^(4*p) == 16 (mod 2*p). If k = 2*t > 2 is a term, then 2*k-1 = 4*t-1 must also be composite, since ord(2,t) | (4*k-1) and ord(2,t) <= eulerphi(t) <= t-1 < 4*t-1.
If k = 2*t > 2 is a term, then (2^(2*k) - 2)/k = (2^(4*k-1) - 1)/t is composite. See A347907 for a proof.
2*(2^t - 1) is a term if and only if 2^(t+2) == 5 (mod t) (t = 1, 3, 9, 871, 2043, 2119, 8769, ...).

Examples

			14 is a term since 14 divides 2^28 - 2.
		

Crossrefs

Programs

  • PARI
    isA347908(k) = if(k%4==2, k=k>>1; if(isprime(k) && k!=7, 0, Mod(2, k)^(4*k-1)==1), 0)

Formula

a(n) = A347907(n)*2.

A347907 Numbers k such that 2^(4*k-1) == 1 (mod k).

Original entry on oeis.org

1, 7, 511, 10033, 242959, 1265839, 1838599, 4138729, 4446631, 10561159, 13179319, 19926007, 21224239, 38356159, 65746249, 72161239, 82180303, 87563239, 88323689, 98352799, 124563313, 153394537, 158525689, 219011569, 248520769, 348485359, 498260329, 636381799, 638395369, 685333399, 689463889
Offset: 1

Views

Author

Jianing Song, Sep 18 2021

Keywords

Comments

Odd numbers k such that ord(2,k) divides 4*k-1, where ord(2,k) is the multiplicative order of 2 modulo k.
Numbers k such that 2*k is in A130421.
Terms > 7 must be composite, since for odd primes p we have 2^(4*p-1) == 8 (mod p). If k > 1 is a term, then 4*k-1 must also be composite, since ord(2,k) | (4*k-1) and ord(2,k) <= eulerphi(k) <= k-1 < 4*k-1.
If k > 1 is a term, then (2^(4*k-1) - 1)/k is composite. Proof: since 4*k-1 is composite, write 4*k-1 = u*v, u >= v > 1. Proof: since 4*k-1 is composite, write 4*k-1 = u*v, u >= v > 1, then (2^(4*k-1) - 1)/k = (2^u - 1)*(2^(u*(v-1)) + ... + 2^u + 1)/k. Since k | 2^(4*k-1) - 1, there exist positive integers a,b such that a*b = k and that a | 2^u - 1 and b | 2^(u*(v-1)) + ... + 2^u + 1. Note that (2^u - 1)/a, (2^(u*(v-1)) + ... + 2^u + 1)/b >= (2^u - 1)/k >= (2^sqrt(4*k-1) - 1)/k > 1, so (2^(4*k-1) - 1)/k is the product of two integers > 1, so it is composite.
2^t - 1 is a term if and only if 2^(t+2) == 5 (mod t) (t = 1, 3, 9, 871, 2043, 2119, 8769, ...).

Examples

			7 is a term since 7 divides 2^27 - 1.
		

Crossrefs

Cf. A347906 (a similar sequence).

Programs

  • Mathematica
    Join[{1},Parallelize[Select[Range[69*10^7],PowerMod[2,4#-1,#]==1&]]] (* Harvey P. Dale, Apr 16 2023 *)
  • PARI
    isA347907(k) = if(k%2 && (!isprime(k) || k==7), Mod(2, k)^(4*k-1)==1, 0)

Formula

a(n) = A347908(n)/2.

A350083 a(n) = (A006935(n) - 1) / ord(2,A006935(n)/2), where ord(k,m) is the multiplicative order of k modulo m.

Original entry on oeis.org

1, 617, 1305, 9339, 225, 5297, 6985, 1549, 174233, 46549, 93701, 66879, 431087, 593887, 1288921, 446275, 43685, 1205, 3361, 2577225, 1313, 430739, 177301, 8541, 13067, 474525, 561301, 84725, 158873, 725725, 3851, 14019, 128861, 1090301, 2529, 430667, 541673
Offset: 1

Views

Author

Jianing Song, Dec 12 2021

Keywords

Comments

List of (2*k-1) / ord(2,k) where k ranges over the odd numbers such that 2^(2*k-1) == 1 (mod k).

Examples

			A006935(2) = 161038, so a(2) = (161038 - 1) / ord(2,161038/2) = 617.
A006935(3) = 215326, so a(3) = (215326 - 1) / ord(2,215326/2) = 1305.
		

Crossrefs

Programs

  • PARI
    list(lim) = my(v=[],d); forstep(k=1, lim, 2, if((2*k-1)%(d=znorder(Mod(2,k)))==0, v=concat(v,(2*k-1)/d))); v \\ gives a(n) for A347906(n) <= lim

Formula

a(n) = (2*A347906(n) - 1) / ord(2,A347906(n)) = (A006935(n) - 1) / A350084(n).

A350084 a(n) = ord(2,A006935(n)/2), where ord(k,m) is the multiplicative order of k modulo m.

Original entry on oeis.org

1, 261, 165, 275, 13425, 1485, 1305, 32085, 825, 3465, 2093, 3135, 495, 495, 261, 847, 9405, 552189, 198561, 261, 579261, 2475, 6237, 166725, 111111, 3393, 3565, 25245, 18585, 4437, 891891, 309455, 37125, 4833, 2301585, 14355, 11781, 3315, 915, 84975, 35259
Offset: 1

Views

Author

Jianing Song, Dec 12 2021

Keywords

Comments

List of ord(2,k) where k ranges over the odd numbers such that 2^(2*k-1) == 1 (mod k).

Examples

			A006935(2) = 161038, so a(2) = ord(2,161038/2) = 261.
A006935(3) = 215326, so a(3) = ord(2,215326/2) = 165.
		

Crossrefs

Programs

  • PARI
    list(lim) = my(v=[],d); forstep(k=1, lim, 2, if((2*k-1)%(d=znorder(Mod(2,k)))==0, v=concat(v,d))); v \\ gives a(n) for A347906(n) <= lim

Formula

a(n) = ord(2,A347906(n)) = (A006935(n) - 1) / A350083(n).
Showing 1-5 of 5 results.