A006935
Even pseudoprimes (or primes) to base 2: even n that divide 2^n - 2.
Original entry on oeis.org
2, 161038, 215326, 2568226, 3020626, 7866046, 9115426, 49699666, 143742226, 161292286, 196116194, 209665666, 213388066, 293974066, 336408382, 377994926, 410857426, 665387746, 667363522, 672655726, 760569694, 1066079026, 1105826338, 1423998226, 1451887438, 1610063326, 2001038066, 2138882626, 2952654706, 3220041826
Offset: 1
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 23.
- J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factorizations of b^n+/-1 b=2, 3, 5, 6, 7, 10, 11, 12 up to high powers, Contemporary Math. v.22.
- R. K. Guy, Unsolved Problems in Number Theory, A12.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 91.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Max Alekseyev, Table of n, a(n) for n = 1..1319 (contains all terms below 2*10^15; first 156 terms from R. G. E. Pinch)
- N. G. W. H. Beeger, On even numbers m dividing 2^m-2, Amer. Math. Monthly, Vol. 58, No. 8 (1951), pp. 553-555.
- D. H. Lehmer, On the Converse of Fermat's Theorem II, Amer. Math. Monthly, Vol. 56, No. 5 (1949), pp. 300-309.
- A. Rotkiewicz and K. Ziemak, On Even Pseudoprimes, The Fibonacci Quarterly, Vol. 33, No. 2 (1995), pp. 123-125.
- Eric Weisstein's World of Mathematics, Fermat Pseudoprime.
- Index entries for sequences related to pseudoprimes
A116622
Positive integers n such that 13^n == 2 (mod n).
Original entry on oeis.org
1, 11, 140711, 863101, 1856455, 115602923, 566411084209, 706836043419179
Offset: 1
Solutions to 13^n == k (mod n):
A015963 (k=-1),
A116621 (k=1), this sequence (k=2),
A116629 (k=3),
A116630 (k=4),
A116611 (k=5),
A116631 (k=6),
A116632 (k=7),
A295532 (k=8),
A116636 (k=9),
A116620 (k=10),
A116638 (k=11),
A116639 (k=15).
-
Select[Range[1, 500000], Mod[13^#, #] == 2 &] (* G. C. Greubel, Nov 19 2017 *)
Join[{1}, Select[Range[5000000], PowerMod[13, #, #] == 2 &]] (* Robert Price, Apr 10 2020 *)
-
isok(n) = Mod(13, n)^n == 2; \\ Michel Marcus, Nov 19 2017
Term a(1)=1 is prepended and a(7)-a(8) are added by
Max Alekseyev, Jun 29 2011
A277401
Positive integers n such that 7^n == 2 (mod n).
Original entry on oeis.org
1, 5, 143, 1133, 2171, 8567, 16805, 208091, 1887043, 517295383, 878436591673
Offset: 1
7 == 2 mod 1, so 1 is a term;
16807 == 2 mod 5, so 5 is a term.
-
Join[{1},Select[Range[5173*10^5],PowerMod[7,#,#]==2&]] (* The program will generate the first 10 terms of the sequence; it would take a very long time to generate the 11th term. *) (* Harvey P. Dale, Apr 15 2020 *)
-
isok(n) = Mod(7, n)^n == 2; \\ Michel Marcus, Oct 13 2016
A347906
Numbers k such that 2^(2*k-1) == 1 (mod k).
Original entry on oeis.org
1, 80519, 107663, 1284113, 1510313, 3933023, 4557713, 24849833, 71871113, 80646143, 98058097, 104832833, 106694033, 146987033, 168204191, 188997463, 205428713, 332693873, 333681761, 336327863, 380284847, 533039513, 552913169, 711999113, 725943719, 805031663, 1000519033, 1069441313, 1476327353, 1610020913
Offset: 1
80519 is a term since 80519 divides 2^161037 - 1 (the multiplicative order of 2 modulo 80519 is 261, which is a divisor of 161037). Note that 2 * 80519 = 161038 = A006935(2) is the smallest even pseudoprime to base 2.
A130422
Numbers k such that 4^k == 3 (mod k).
Original entry on oeis.org
1, 137243, 2517961, 117741349, 369940993, 19049924867, 30861256333, 1087115897989, 38969560049629
Offset: 1
-
for (n=1,10^33, if ( Mod(4,n)^n==3, print1(n,", "))); /* Joerg Arndt, Jun 09 2012 */
A327840
Numbers m that divide 4^m + 3.
Original entry on oeis.org
1, 7, 16387, 4509253, 24265177, 42673920001, 103949349763, 12939780075073
Offset: 1
-
[1] cat [n: n in [1..10^8] | Modexp(4,n,n) + 3 eq n];
-
Select[Range[10^7], IntegerQ[(PowerMod[4, #, # ]+3)/# ]&] (* Metin Sariyar, Sep 28 2019 *)
-
is(n)=Mod(4,n)^n==-3 \\ Charles R Greathouse IV, Sep 29 2019
A347908
Even numbers k such that 2^(2*k) == 2 (mod k).
Original entry on oeis.org
2, 14, 1022, 20066, 485918, 2531678, 3677198, 8277458, 8893262, 21122318, 26358638, 39852014, 42448478, 76712318, 131492498, 144322478, 164360606, 175126478, 176647378, 196705598, 249126626, 306789074, 317051378, 438023138, 497041538, 696970718, 996520658
Offset: 1
14 is a term since 14 divides 2^28 - 2.
-
isA347908(k) = if(k%4==2, k=k>>1; if(isprime(k) && k!=7, 0, Mod(2, k)^(4*k-1)==1), 0)
A333269
Positive integers n such that 17^n == 2 (mod n).
Original entry on oeis.org
1, 3, 5, 3585, 4911, 5709, 1688565, 7361691, 16747709, 3226850283899, 8814126944005, 33226030397603
Offset: 1
-
for(k=1, 1e6, if(Mod(17, k)^k==2, print1(k", ")))
-
A333269_list = [n for n in range(1,10**6) if n == 1 or pow(17,n,n) == 2] # Chai Wah Wu, Mar 14 2020
A347907
Numbers k such that 2^(4*k-1) == 1 (mod k).
Original entry on oeis.org
1, 7, 511, 10033, 242959, 1265839, 1838599, 4138729, 4446631, 10561159, 13179319, 19926007, 21224239, 38356159, 65746249, 72161239, 82180303, 87563239, 88323689, 98352799, 124563313, 153394537, 158525689, 219011569, 248520769, 348485359, 498260329, 636381799, 638395369, 685333399, 689463889
Offset: 1
7 is a term since 7 divides 2^27 - 1.
-
Join[{1},Parallelize[Select[Range[69*10^7],PowerMod[2,4#-1,#]==1&]]] (* Harvey P. Dale, Apr 16 2023 *)
-
isA347907(k) = if(k%2 && (!isprime(k) || k==7), Mod(2, k)^(4*k-1)==1, 0)
A333134
Positive integers k such that 11^k == 2 (mod k).
Original entry on oeis.org
1, 3, 413, 1329, 6587, 11629, 75761, 925071199, 9031140861789, 114876097917387, 1314252479257933
Offset: 1
-
for(k=1, 1e6, if(Mod(11, k)^k==2, print1(k", ")))
Showing 1-10 of 10 results.
Comments