A116622
Positive integers n such that 13^n == 2 (mod n).
Original entry on oeis.org
1, 11, 140711, 863101, 1856455, 115602923, 566411084209, 706836043419179
Offset: 1
Solutions to 13^n == k (mod n):
A015963 (k=-1),
A116621 (k=1), this sequence (k=2),
A116629 (k=3),
A116630 (k=4),
A116611 (k=5),
A116631 (k=6),
A116632 (k=7),
A295532 (k=8),
A116636 (k=9),
A116620 (k=10),
A116638 (k=11),
A116639 (k=15).
-
Select[Range[1, 500000], Mod[13^#, #] == 2 &] (* G. C. Greubel, Nov 19 2017 *)
Join[{1}, Select[Range[5000000], PowerMod[13, #, #] == 2 &]] (* Robert Price, Apr 10 2020 *)
-
isok(n) = Mod(13, n)^n == 2; \\ Michel Marcus, Nov 19 2017
Term a(1)=1 is prepended and a(7)-a(8) are added by
Max Alekseyev, Jun 29 2011
A333134
Positive integers k such that 11^k == 2 (mod k).
Original entry on oeis.org
1, 3, 413, 1329, 6587, 11629, 75761, 925071199, 9031140861789, 114876097917387, 1314252479257933
Offset: 1
-
for(k=1, 1e6, if(Mod(11, k)^k==2, print1(k", ")))
A333414
Positive integers k such that k divides 17^k + 2.
Original entry on oeis.org
1, 19, 35, 115, 44095, 211117, 14376053, 43472060395, 561558718915, 2182879071661
Offset: 1
-
for(k=1, 1e6, if(Mod(17, k)^k==-2, print1(k", ")))
Showing 1-3 of 3 results.
Comments