A347907 Numbers k such that 2^(4*k-1) == 1 (mod k).
1, 7, 511, 10033, 242959, 1265839, 1838599, 4138729, 4446631, 10561159, 13179319, 19926007, 21224239, 38356159, 65746249, 72161239, 82180303, 87563239, 88323689, 98352799, 124563313, 153394537, 158525689, 219011569, 248520769, 348485359, 498260329, 636381799, 638395369, 685333399, 689463889
Offset: 1
Keywords
Examples
7 is a term since 7 divides 2^27 - 1.
Links
- Jianing Song, Table of n, a(n) for n = 1..1298 (contains all terms below 5*10^14; based on Max Alekseyev's b-file for A130421)
Programs
-
Mathematica
Join[{1},Parallelize[Select[Range[69*10^7],PowerMod[2,4#-1,#]==1&]]] (* Harvey P. Dale, Apr 16 2023 *)
-
PARI
isA347907(k) = if(k%2 && (!isprime(k) || k==7), Mod(2, k)^(4*k-1)==1, 0)
Formula
a(n) = A347908(n)/2.
Comments