cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347907 Numbers k such that 2^(4*k-1) == 1 (mod k).

Original entry on oeis.org

1, 7, 511, 10033, 242959, 1265839, 1838599, 4138729, 4446631, 10561159, 13179319, 19926007, 21224239, 38356159, 65746249, 72161239, 82180303, 87563239, 88323689, 98352799, 124563313, 153394537, 158525689, 219011569, 248520769, 348485359, 498260329, 636381799, 638395369, 685333399, 689463889
Offset: 1

Views

Author

Jianing Song, Sep 18 2021

Keywords

Comments

Odd numbers k such that ord(2,k) divides 4*k-1, where ord(2,k) is the multiplicative order of 2 modulo k.
Numbers k such that 2*k is in A130421.
Terms > 7 must be composite, since for odd primes p we have 2^(4*p-1) == 8 (mod p). If k > 1 is a term, then 4*k-1 must also be composite, since ord(2,k) | (4*k-1) and ord(2,k) <= eulerphi(k) <= k-1 < 4*k-1.
If k > 1 is a term, then (2^(4*k-1) - 1)/k is composite. Proof: since 4*k-1 is composite, write 4*k-1 = u*v, u >= v > 1. Proof: since 4*k-1 is composite, write 4*k-1 = u*v, u >= v > 1, then (2^(4*k-1) - 1)/k = (2^u - 1)*(2^(u*(v-1)) + ... + 2^u + 1)/k. Since k | 2^(4*k-1) - 1, there exist positive integers a,b such that a*b = k and that a | 2^u - 1 and b | 2^(u*(v-1)) + ... + 2^u + 1. Note that (2^u - 1)/a, (2^(u*(v-1)) + ... + 2^u + 1)/b >= (2^u - 1)/k >= (2^sqrt(4*k-1) - 1)/k > 1, so (2^(4*k-1) - 1)/k is the product of two integers > 1, so it is composite.
2^t - 1 is a term if and only if 2^(t+2) == 5 (mod t) (t = 1, 3, 9, 871, 2043, 2119, 8769, ...).

Examples

			7 is a term since 7 divides 2^27 - 1.
		

Crossrefs

Cf. A347906 (a similar sequence).

Programs

  • Mathematica
    Join[{1},Parallelize[Select[Range[69*10^7],PowerMod[2,4#-1,#]==1&]]] (* Harvey P. Dale, Apr 16 2023 *)
  • PARI
    isA347907(k) = if(k%2 && (!isprime(k) || k==7), Mod(2, k)^(4*k-1)==1, 0)

Formula

a(n) = A347908(n)/2.