cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347929 a(n) = 2^(-1 + (n + n mod 2)/2)*abs(permanent(M_n)) where M_n is the n X n matrix M_n(j, k) = cos(Pi*j*k/n) if n >= 1 and a(0) = 1.

Original entry on oeis.org

1, 1, 1, 2, 0, 6, 12, 12, 96, 108, 240, 380, 0, 28428, 8176, 16200, 387072, 2817324, 6065280, 4604796, 56832000, 14574168, 2092107072, 13994428360, 8725045248, 162749055000, 1304167707648, 3291435901044, 17899142381568, 107056050266172
Offset: 0

Views

Author

Peter Luschny, Sep 19 2021

Keywords

Examples

			a(6) = 16*cos^4(Pi/8) + 8*cos^2(Pi/8) - 64*cos^2(Pi*3/8)*cos^2(Pi/8) + 8*cos^2(Pi*3/8) + 16*cos^4(Pi*3/8).
		

Crossrefs

Cf. A347281.

Programs

  • PARI
    p(n) = matpermanent(matrix(n, n, j, k, cos((Pi*j*k)/n)));
    A347929(n) = abs(round(2^(-1 + (n + n %2)/2)*p(n)));
    {for(n = 0, 12, print(A347929(n)))}
  • SageMath
    def A347929(n):
        if n == 0: return 1
        RF = RealField(100) # adjust precision if needed
        M = matrix(RF, n, n, lambda j, k: cos(j * k * pi / n))
        c = 2^(-1 + (n + n % 2) // 2)
        return abs(round(c*M.permanent()))
    print([A347929(n) for n in range(12)])