cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347930 3-Springer numbers.

Original entry on oeis.org

1, 1, 3, 16, 88, 625, 5527, 55760, 640540, 8329326, 120212331, 1905939913, 32987637967, 618591571085, 12489644875037, 270193806214360, 6235154917414954, 152875655211527878, 3968729594485785289, 108754865309750398187, 3137052120203959610759
Offset: 2

Views

Author

Alejandro H. Morales, Sep 19 2021

Keywords

Comments

a(n) is also the volume of a certain flow polytope.

Crossrefs

Programs

  • Maple
    wcomps:=proc(n,k)
           option remember;
    local ocomps,ncomps,i;
    ocomps:=combinat:-composition(n+k,k);
    ncomps:={};
    for i from 1 to nops(ocomps) do
       ncomps:=ncomps union{[seq(ocomps[i][j]-1,j=1..k)]};
    end do;
    return [op(ncomps)];
    end proc:
    b:=proc(s) option remember;
       local k;
       k := nops(s);
       if s = [seq(0,i=1..k)] then
          return(1);
       elif s[1]>0 then
          return(add(b([s[2]+j,op(s[3..k]),s[1]-j-1]),j=0..s[1]-1));
       else
          return(0);
       end if;
    end proc:a:=proc(n)   local N,S:   N := n-2;   S := wcomps(N,3);   return add(combinat:-multinomial(N,op(s))*b(s), s in S);end proc:seq(a(n),n=2..10);

Formula

a(n) = Sum_{(x,y,z), x+y+z=n-2} ((n-2)!/(x!*y!*z!))*b(x,y,z), where b(x,y,z) are the 3-Entringer numbers defined by Ramassamy.