A347930 3-Springer numbers.
1, 1, 3, 16, 88, 625, 5527, 55760, 640540, 8329326, 120212331, 1905939913, 32987637967, 618591571085, 12489644875037, 270193806214360, 6235154917414954, 152875655211527878, 3968729594485785289, 108754865309750398187, 3137052120203959610759
Offset: 2
Keywords
Links
- Arvind Ayyer, Matthieu Josuat-Vergès, and Sanjay Ramassamy, Extensions of partial cyclic orders and consecutive coordinate polytopes, Ann. H. Lebesgue, 3 (2020), 275-297.
- R. S. Gonzalez D'Leon, A. H. Morales, C. R. H. Hanusa, and M. Yip, Column convex matrices, G-cyclic orders, and flow polytopes, arXiv:2107.07326 [math.CO], 2021.
- S. Ramassamy, Extensions of partial cyclic orders, Euler numbers and multidimensional boustrophedons, Electron. J. Combin., 25 (2018), #P1.66.
Programs
-
Maple
wcomps:=proc(n,k) option remember; local ocomps,ncomps,i; ocomps:=combinat:-composition(n+k,k); ncomps:={}; for i from 1 to nops(ocomps) do ncomps:=ncomps union{[seq(ocomps[i][j]-1,j=1..k)]}; end do; return [op(ncomps)]; end proc: b:=proc(s) option remember; local k; k := nops(s); if s = [seq(0,i=1..k)] then return(1); elif s[1]>0 then return(add(b([s[2]+j,op(s[3..k]),s[1]-j-1]),j=0..s[1]-1)); else return(0); end if; end proc:a:=proc(n) local N,S: N := n-2; S := wcomps(N,3); return add(combinat:-multinomial(N,op(s))*b(s), s in S);end proc:seq(a(n),n=2..10);
Formula
a(n) = Sum_{(x,y,z), x+y+z=n-2} ((n-2)!/(x!*y!*z!))*b(x,y,z), where b(x,y,z) are the 3-Entringer numbers defined by Ramassamy.
Comments