A347937 Numbers k such that k and k+1 are both terms of A347935.
2282175, 16769024, 18356624, 27252224, 32493824, 35820224, 46577024, 50968575, 51962624, 53992575, 55130624, 61854975, 63101024, 63140175, 69980624, 72525375, 73378304, 74376224, 80791424, 82389824, 98834175, 102650624, 105674624, 107769375, 109001024, 110238975
Offset: 1
Keywords
Examples
2282175 is a term since A187795(2282175) = 4801650 > 2*2282175 = 4564350 and A187795(2282176) = 4630080 > 2*2282176 = 4564352.
Links
- David A. Corneth, Table of n, a(n) for n = 1..2372 (first 103 terms from Amiram Eldar)
Programs
-
Mathematica
abQ[n_] := DivisorSigma[1, n] > 2*n; s[n_] := DivisorSum[n, # &, abQ[#] &]; q[n_] := s[n] > 2*n; seq = {}; q1 = q[1]; Do[q2 = q[n]; If[q1 && q2, AppendTo[seq, n-1]]; q1 = q2, {n, 2, 2*10^7}]; seq
-
PARI
isok1(k) = sumdiv(k, d, if (sigma(d)>2*d, d)) > 2*k; \\ A347935 isok(k) = isok1(k) && isok1(k+1); \\ Michel Marcus, Sep 20 2021