A347940 Array T(n, k) = Sum_{j=2..n+2} (-1)^(n-j)*Stirling2(n+1, j-1)*j!*j^k/2, for n and k >= 0, read by antidiagonals.
1, 2, 2, 4, 7, 4, 8, 23, 23, 8, 16, 73, 115, 73, 16, 32, 227, 533, 533, 227, 32, 64, 697, 2359, 3451, 2359, 697, 64, 128, 2123, 10133, 20753, 20753, 10133, 2123, 128, 256, 6433, 42655, 118843, 164731, 118843, 42655, 6433, 256, 512, 19427, 177053, 657833, 1220657, 1220657, 657833, 177053, 19427, 512
Offset: 0
Examples
Array begins: 1 2 4 8 16 32 ... 2 7 23 73 227 697 ... 4 23 115 533 2359 10133 ... 8 73 533 3451 20753 118843 ... 16 227 2359 20753 164731 1220657 ... 32 697 10133 118843 1220657 11467387 ... ...
Links
- Arvind Ayyer and Beáta Bényi, Toppling on permutations with an extra chip, El. J. Comb., 28 (2021), P4.18. The array seems to appear in Table 6.
- Usman Hafeez, Peter Marcus, Kyle Ormsby and Angélica Osorno, Saturated and linear isometric transfer systems for cyclic groups of order p^m*q^n, arXiv:2109.08210 [math.AT], 2021.
Crossrefs
Programs
-
PARI
T(n, k) = sum(j=2, n+2, (-1)^(n-j)*stirling(n+1, j-1, 2)*j!*j^k/2);
Formula
T(n,k) = T(k,n).
T(n,k) = Sum_{j=0..min(n,k)} (j!*(j+2)!/2)*Stirling2(n+2,j+2;2)*Stirling2(k+2,j+2;2), n,k >= 0, where Stirling2(n,k;2) are the 2-Stirling numbers of the second kind A143494. - Fabián Pereyra, Jan 08 2022
Comments