A347947 Number of walks on square lattice from (1,n) to (0,0) using steps that decrease the Euclidean distance to the origin and increase the Euclidean distance to (n,1) and that change each coordinate by at most 1.
1, 3, 5, 24, 81, 298, 1070, 3868, 13960, 50417, 182084, 657707, 2375894, 8583264, 31009890, 112038032, 404803299, 1462624643, 5284813128, 19095564020, 68998567080, 249316670981, 900876831495, 3255230444720, 11762504284218, 42502963168784, 153581776819904
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Alois P. Heinz, Animation of a(5) = 298 walks
- Wikipedia, Counting lattice paths
- Wikipedia, Self-avoiding walk
Crossrefs
Column (or row) k=1 of A346540.
Programs
-
Maple
s:= proc(n) option remember; `if`(n=0, [[]], map(x-> seq([x[], i], i=-1..1), s(n-1))) end: b:= proc(l, v) option remember; (n-> `if`(l=[0$n], 1, add((h-> `if`( add(i^2, i=h)
add(i^2, i=v-l) , b(h, v), 0))(l+x), x=s(n))))(nops(l)) end: a:= n-> b([n, 1]$2): seq(a(n), n=0..30); -
Mathematica
s[n_] := s[n] = If[n == 0, {{}}, Sequence @@ Table[Append[#, i], {i, -1, 1}]& /@ s[n-1]]; b[l_, v_] := b[l, v] = With[{n = Length[l]}, If[l == Table[0, {n}], 1, Sum[With[{h = l + x}, If[h.h
(v-l).(v-l), b[h, v], 0]], {x, s[n]}]]]; a[n_] := b[{n, 1}, {n, 1}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 04 2021, after Alois P. Heinz *)
Comments