cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A345000 a(n) = gcd(A003415(n), A003415(A276086(n))), where A003415(n) is the arithmetic derivative of n, and A276086(n) gives the prime product form of primorial base expansion of n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 16, 1, 3, 1, 2, 5, 1, 1, 4, 5, 5, 1, 2, 1, 1, 1, 10, 1, 1, 3, 12, 1, 1, 1, 2, 1, 1, 1, 4, 1, 5, 1, 2, 1, 5, 5, 4, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 12, 3, 1, 1, 2, 1, 1, 1, 12, 1, 1, 55, 10, 3, 1, 1, 16, 1, 1, 1, 2, 1, 5, 1, 140, 1, 3, 1, 16, 1, 49, 3, 2, 1, 7, 1, 28, 1, 7, 1, 2, 1
Offset: 0

Views

Author

Antti Karttunen, Jul 21 2021

Keywords

Crossrefs

Cf. A003415, A276086, A327860, A347958 (inverse Möbius transform), A347959, A351083, A351085, A351086, A351235, A351236.
Cf. A166486 (a(n) mod 2, parity of terms, see comment in A327860).
Cf. also A324198, A327858.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A345000(n) = gcd(A003415(n), A003415(A276086(n)));

Formula

a(n) = gcd(A003415(n), A327860(n)) = gcd(A003415(n), A003415(A276086(n))).

A347959 Dirichlet convolution of A342001 with A345000.

Original entry on oeis.org

0, 1, 1, 3, 1, 7, 1, 7, 3, 9, 1, 18, 1, 11, 10, 15, 1, 16, 1, 24, 12, 15, 1, 40, 3, 17, 6, 30, 1, 54, 1, 39, 16, 21, 14, 41, 1, 23, 18, 54, 1, 72, 1, 42, 25, 27, 1, 92, 3, 24, 22, 52, 1, 30, 18, 68, 24, 33, 1, 132, 1, 35, 35, 73, 20, 96, 1, 60, 28, 92, 1, 99, 1, 41, 27, 66, 20, 114, 1, 120, 10, 45, 1, 176, 24, 47
Offset: 1

Views

Author

Antti Karttunen, Sep 21 2021

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A342001(n/d) * A345000(d).

A348027 Dirichlet convolution of Euler phi with A324198.

Original entry on oeis.org

1, 2, 5, 4, 5, 8, 7, 8, 15, 14, 11, 16, 13, 14, 37, 16, 17, 24, 19, 28, 35, 22, 23, 32, 49, 26, 45, 28, 29, 60, 31, 32, 55, 34, 41, 48, 37, 38, 65, 56, 41, 62, 43, 44, 111, 46, 47, 64, 55, 114, 85, 52, 53, 72, 59, 62, 95, 58, 59, 120, 61, 62, 123, 64, 65, 88, 67, 68, 115, 134, 71, 96, 73, 74, 293, 76, 83, 104, 79
Offset: 1

Views

Author

Antti Karttunen, Sep 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{k = n, m = 1, p = 2}, While[k > 0, m *= (p^Min[Mod[k, p], IntegerExponent[n, p]]); k = Quotient[k, p]; p = NextPrime[p]]; m]; a[n_] := DivisorSum[n, s[#] * EulerPhi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    A324198(n) = { my(m=1, p=2, orgn=n); while(n, m *= (p^min(n%p, valuation(orgn, p))); n = n\p; p = nextprime(1+p)); (m); };
    A348027(n) = sumdiv(n,d,eulerphi(d)*A324198(n/d));

Formula

a(n) = Sum_{d|n} phi(n/d) * A324198(d).
a(n) = Sum_{k=1..n} A324198(gcd(n,k)).
Showing 1-3 of 3 results.