A347961 Dirichlet convolution of A342001 with itself.
0, 0, 0, 1, 0, 2, 0, 4, 1, 2, 0, 14, 0, 2, 2, 10, 0, 14, 0, 18, 2, 2, 0, 42, 1, 2, 4, 22, 0, 40, 0, 20, 2, 2, 2, 63, 0, 2, 2, 58, 0, 48, 0, 30, 20, 2, 0, 92, 1, 18, 2, 34, 0, 40, 2, 74, 2, 2, 0, 204, 0, 2, 24, 35, 2, 64, 0, 42, 2, 56, 0, 162, 0, 2, 20, 46, 2, 72, 0, 132, 10, 2, 0, 260, 2, 2, 2, 106, 0, 210, 2, 54, 2, 2, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Vaclav Kotesovec, Graph - the asymptotic ratio (100000 terms)
Programs
Formula
From Vaclav Kotesovec, Mar 04 2023: (Start)
Let pr(s) = Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s))
and su(s) = Sum_{primes p} p^s/((p^s - 1)*(p^s + p - 1)).
Sum_{k=1..n} a(k) ~ pr(2)^2 * su(2)^2 * Pi^4 * n^2 * log(n) / 72 *
(1 + (2*gamma - 1/2 + 2*pr'(2)/pr(2) + 2*su'(2)/su(2) + 12*zeta'(2)/Pi^2) / log(n)), where
pr(2) = A065464 = 0.428249505677094440218765707581823546121298513355936...
pr'(2) = pr(2) * Sum_{primes p} (3*p - 2) * log(p) / (p^3 - 2*p + 1) = 0.6293283828324697510445630056425352981207558777167836747744750359407...
su(2) = Sum_{j>=2} (1/2 + (-1)^j * (Fibonacci(j) - 1/2)) * PrimeZetaP(j) = 0.4526952873143153104685540856936425315834753528741817723313791528384...
su'(2) = Sum_{primes p} p^2 * (1-p-p^4) * log(p) / ((p^2-1)^2 * (p^2+p-1)^2) = -0.486606220169261905698805096547122238460686354267440350206456696497...
and gamma is the Euler-Mascheroni constant A001620. (End)