cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347961 Dirichlet convolution of A342001 with itself.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 4, 1, 2, 0, 14, 0, 2, 2, 10, 0, 14, 0, 18, 2, 2, 0, 42, 1, 2, 4, 22, 0, 40, 0, 20, 2, 2, 2, 63, 0, 2, 2, 58, 0, 48, 0, 30, 20, 2, 0, 92, 1, 18, 2, 34, 0, 40, 2, 74, 2, 2, 0, 204, 0, 2, 24, 35, 2, 64, 0, 42, 2, 56, 0, 162, 0, 2, 20, 46, 2, 72, 0, 132, 10, 2, 0, 260, 2, 2, 2, 106, 0, 210, 2, 54, 2, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2021

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A342001(d) * A342001(n/d).
From Vaclav Kotesovec, Mar 04 2023: (Start)
Let pr(s) = Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s))
and su(s) = Sum_{primes p} p^s/((p^s - 1)*(p^s + p - 1)).
Sum_{k=1..n} a(k) ~ pr(2)^2 * su(2)^2 * Pi^4 * n^2 * log(n) / 72 *
(1 + (2*gamma - 1/2 + 2*pr'(2)/pr(2) + 2*su'(2)/su(2) + 12*zeta'(2)/Pi^2) / log(n)), where
pr(2) = A065464 = 0.428249505677094440218765707581823546121298513355936...
pr'(2) = pr(2) * Sum_{primes p} (3*p - 2) * log(p) / (p^3 - 2*p + 1) = 0.6293283828324697510445630056425352981207558777167836747744750359407...
su(2) = Sum_{j>=2} (1/2 + (-1)^j * (Fibonacci(j) - 1/2)) * PrimeZetaP(j) = 0.4526952873143153104685540856936425315834753528741817723313791528384...
su'(2) = Sum_{primes p} p^2 * (1-p-p^4) * log(p) / ((p^2-1)^2 * (p^2+p-1)^2) = -0.486606220169261905698805096547122238460686354267440350206456696497...
and gamma is the Euler-Mascheroni constant A001620. (End)