cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347396 a(n) = A347395(A276086(n)), where A347395 is Dirichlet convolution of Liouville's lambda with A342001.

Original entry on oeis.org

0, 1, 1, 3, 1, 2, 1, 5, 6, 14, 5, 9, 1, 2, 3, 5, 2, 3, 2, 6, 8, 16, 6, 10, 2, 3, 5, 7, 3, 4, 1, 7, 8, 20, 7, 13, 10, 34, 44, 92, 34, 58, 7, 13, 20, 32, 13, 19, 16, 40, 56, 104, 40, 64, 13, 19, 32, 44, 19, 25, 1, 2, 3, 5, 2, 3, 5, 9, 14, 22, 9, 13, 2, 3, 5, 7, 3, 4, 6, 10, 16, 24, 10, 14, 3, 4, 7, 9, 4, 5, 2, 8, 10, 22
Offset: 0

Views

Author

Antti Karttunen, Sep 02 2021

Keywords

Comments

The scatter plot looks quite peculiar. - Antti Karttunen, Sep 20 2021

Crossrefs

Programs

A347961 Dirichlet convolution of A342001 with itself.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 4, 1, 2, 0, 14, 0, 2, 2, 10, 0, 14, 0, 18, 2, 2, 0, 42, 1, 2, 4, 22, 0, 40, 0, 20, 2, 2, 2, 63, 0, 2, 2, 58, 0, 48, 0, 30, 20, 2, 0, 92, 1, 18, 2, 34, 0, 40, 2, 74, 2, 2, 0, 204, 0, 2, 24, 35, 2, 64, 0, 42, 2, 56, 0, 162, 0, 2, 20, 46, 2, 72, 0, 132, 10, 2, 0, 260, 2, 2, 2, 106, 0, 210, 2, 54, 2, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2021

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A342001(d) * A342001(n/d).
From Vaclav Kotesovec, Mar 04 2023: (Start)
Let pr(s) = Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s))
and su(s) = Sum_{primes p} p^s/((p^s - 1)*(p^s + p - 1)).
Sum_{k=1..n} a(k) ~ pr(2)^2 * su(2)^2 * Pi^4 * n^2 * log(n) / 72 *
(1 + (2*gamma - 1/2 + 2*pr'(2)/pr(2) + 2*su'(2)/su(2) + 12*zeta'(2)/Pi^2) / log(n)), where
pr(2) = A065464 = 0.428249505677094440218765707581823546121298513355936...
pr'(2) = pr(2) * Sum_{primes p} (3*p - 2) * log(p) / (p^3 - 2*p + 1) = 0.6293283828324697510445630056425352981207558777167836747744750359407...
su(2) = Sum_{j>=2} (1/2 + (-1)^j * (Fibonacci(j) - 1/2)) * PrimeZetaP(j) = 0.4526952873143153104685540856936425315834753528741817723313791528384...
su'(2) = Sum_{primes p} p^2 * (1-p-p^4) * log(p) / ((p^2-1)^2 * (p^2+p-1)^2) = -0.486606220169261905698805096547122238460686354267440350206456696497...
and gamma is the Euler-Mascheroni constant A001620. (End)
Showing 1-2 of 2 results.