cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347970 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_3)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 8, 16, 8, 1, 1, 11, 39, 39, 11, 1, 1, 15, 87, 168, 87, 15, 1, 1, 19, 176, 644, 644, 176, 19, 1, 1, 24, 338, 2348, 4849, 2348, 338, 24, 1, 1, 29, 613, 8137, 37159, 37159, 8137, 613, 29, 1, 1, 35, 1071, 27047, 286747, 679054, 286747, 27047, 1071
Offset: 0

Views

Author

Álvar Ibeas, Sep 21 2021

Keywords

Comments

Columns can be computed by a method analogous to that of Fripertinger for isometry classes of linear codes, disallowing scalar transformation of individual coordinates.

Examples

			Triangle begins:
  k:  0   1   2   3   4   5   6   7
      -----------------------------
n=0:  1
n=1:  1   1
n=2:  1   3   1
n=3:  1   5   5   1
n=4:  1   8  16   8   1
n=5:  1  11  39  39  11   1
n=6:  1  15  87 168  87  15   1
n=7:  1  19 176 644 644 176  19   1
There are 4 = A022167(2, 1) one-dimensional subspaces in (F_3)^2, namely, those generated by (0, 1), (1, 0), (1, 1), and (1, 2). The first two are related by coordinate swap, while the remaining two are invariant. Hence, T(2, 1) = 3.
		

Crossrefs

Cf. A022167, A024206(n+1) (column k=1), A076831.