A347970 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_3)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 8, 16, 8, 1, 1, 11, 39, 39, 11, 1, 1, 15, 87, 168, 87, 15, 1, 1, 19, 176, 644, 644, 176, 19, 1, 1, 24, 338, 2348, 4849, 2348, 338, 24, 1, 1, 29, 613, 8137, 37159, 37159, 8137, 613, 29, 1, 1, 35, 1071, 27047, 286747, 679054, 286747, 27047, 1071
Offset: 0
Examples
Triangle begins: k: 0 1 2 3 4 5 6 7 ----------------------------- n=0: 1 n=1: 1 1 n=2: 1 3 1 n=3: 1 5 5 1 n=4: 1 8 16 8 1 n=5: 1 11 39 39 11 1 n=6: 1 15 87 168 87 15 1 n=7: 1 19 176 644 644 176 19 1 There are 4 = A022167(2, 1) one-dimensional subspaces in (F_3)^2, namely, those generated by (0, 1), (1, 0), (1, 1), and (1, 2). The first two are related by coordinate swap, while the remaining two are invariant. Hence, T(2, 1) = 3.
Links
- Álvar Ibeas, Entries up to T(16, 7)
- H. Fripertinger, Isometry classes of codes
- H. Fripertinger, Number of the isometry classes of all ternary (n,k)-codes
- Álvar Ibeas, Column k=2 up to n=100
- Álvar Ibeas, Column k=3 up to n=100
- Álvar Ibeas, Column k=4 up to n=100
- Álvar Ibeas, Column k=5 up to n=100
- Álvar Ibeas, Column k=6 up to n=100
- Álvar Ibeas, Column k=7 up to n=100
Comments