A347975 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_9)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).
1, 1, 1, 1, 6, 1, 1, 21, 21, 1, 1, 64, 374, 64, 1, 1, 163, 5900, 5900, 163, 1, 1, 380, 82587, 644680, 82587, 380, 1, 1, 809, 1018388, 66136870, 66136870, 1018388, 809, 1, 1, 1619, 11174165, 6057912073, 52901629980, 6057912073, 11174165, 1619, 1, 1, 3049, 110404788
Offset: 0
Examples
Triangle begins: k: 0 1 2 3 4 5 -------------------------- n=0: 1 n=1: 1 1 n=2: 1 6 1 n=3: 1 21 21 1 n=4: 1 64 374 64 1 n=5: 1 163 5900 5900 163 1 There are 10 = A022173(2, 1) one-dimensional subspaces in (F_9)^2. Among them, <(1, 1)> and <(1, 2)> are invariant by coordinate swap and the rest are grouped in orbits of size two. Hence, T(2, 1) = 6.
Links
- Álvar Ibeas, Entries up to T(10, 4)
- H. Fripertinger, Isometry classes of codes
- Álvar Ibeas, Column k=1 up to n=100
- Álvar Ibeas, Column k=2 up to n=100
- Álvar Ibeas, Column k=3 up to n=100
- Álvar Ibeas, Column k=4 up to n=100
Formula
T(n, 1) = T(n-1, 1) + A032193(n+8).
Comments