cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A373464 Largest of a quadruple of primes p[1..4] such that (p[k]+1, k=1..4) is in geometric progression.

Original entry on oeis.org

23, 47, 107, 191, 499, 647, 719, 809, 863, 1249, 1439, 1999, 2591, 2879, 3023, 3779, 4079, 5323, 6911, 7039, 7127, 7559, 8231, 8231, 8747, 9839, 10289, 10289, 10499, 10499, 10529, 10691, 11279, 11519, 12959, 13229, 13309, 13999, 15551, 15551, 15971, 18143, 19207
Offset: 1

Views

Author

M. F. Hasler, Jul 12 2024

Keywords

Comments

a(10) = 1249 is the first term not in A299171, a(15) = 3023 is the first term not in A293194, a(17) = 4079 is the first term not in A347977 and also the first term not in A374482, and a(21) = 7127 is the first term not in A184856.

Examples

			The terms of the sequence are column "p[4]" in the following table which lists the sequences of primes, and ratios of the geometric progression (p[k]+1):
   n  | p[1], p[2], p[3], p[4]  |  r = (p[k+1]+1) / (p[k]+1)
------+-------------------------+---------------------------
   1  |    2,    5,   11,   23  |  2 = 6/3 = 12/6 = 24/12
   2  |    5,   11,   23,   47  |  2 = 12/6 = 24/12 = 48/24
   3  |   31,   47,   71,  107  |  3/2 = 48/32 = 72/48 = 108/72
   4  |    2,   11,   47,  191  |  4 = 12/3 = 48/12 = 192/48
   5  |   31,   79,  199,  499  |  5/2 = 80/32 = 200/80 = 500/200
   6  |    2,   17,  107,  647  |  6 = 18/3 = 108/18 = 648/108
   7  |   89,  179,  359,  719  |  2 = 180/90 = ...
   8  |   29,   89,  269,  809  |  3 = 90/30 = ...
   9  |  499,  599,  719,  863  |  6/5 = 600/500 = ...
  10  |   79,  199,  499, 1249  |  5/2 = 200/80 = ...
  11  |  179,  359,  719, 1439  |  2 = 360/180 = ...
  12  |   53,  179,  599, 1999  |  10/3 = 180/54 = ...
		

Crossrefs

Subsequence of A089199 (primes p such that p+1 is divisible by a cube).

Programs

  • PARI
    A373464_upto(N, show=0, D = 1, LIM=N\2) = { my(L=List()); forprime(p=1, LIM, my(denom = p+D); for(numer=denom+1, sqrtnint((N+D) * denom^2, 3), my(r=numer/denom); for(k=1,3, (type(denom * r^k)=="t_INT" && isprime(denom * r^k - D)) || next(2)); listput(L, denom * r^3 - D); show && printf(" | %4d, %4d, %4d, %4d | %s\n",denom-D, denom*r-D, denom*r^2-D, denom*r^3-D, numer/denom))); vecsort(L)}
    
  • Python
    from itertools import islice
    from fractions import Fraction
    from sympy import nextprime
    def A373464_gen(): # generator of terms
        p, plist, pset = 1, [], set()
        while True:
            p = nextprime(p)
            for q in plist:
                r = Fraction(q+1,p+1)
                q2 = r*(q+1)-1
                if q2 < 2:
                    break
                if q2.denominator == 1:
                    q2 = int(q2)
                    if q2 in pset:
                        q3 = r*(q2+1)-1
                        if q3 < 2:
                            break
                        if q3.denominator == 1 and int(q3) in pset:
                            yield p
            plist = [p]+plist
            pset.add(p)
    A373464_list = list(islice(A373464_gen(),20)) # Chai Wah Wu, Jul 16 2024

Extensions

a(26)-a(43) from Chai Wah Wu, Jul 16 2024
Showing 1-1 of 1 results.