A347988 Primes p such that q divides p^2 + p + 1, r divides q^2 + q + 1 and p divides r^2 + r + 1 for some primes q and r.
3, 13, 31, 43, 61, 307, 331, 631, 5233
Offset: 1
Examples
3 is a term since 3^2 + 3 + 1 = 13, 13^2 + 13 + 1 = 3 * 61, and 61^2 + 61 + 1 = 3 * 13 * 97.
Crossrefs
Cf. A101368.
Programs
-
PARI
is(p)={my(W,V1,V2,V3,q1,q2,q3,i1,i2,i3,l1,l2,l3);W=0;V1=factor(p^2+p+1);l1=length(V1[,1]);for(i1=1,l1,q1=V1[i1,1];V2=factor(q1^2+q1+1);l2=length(V2[,1]);for(i2=1,l2,q2=V2[i2,1];V3=factor(q2^2+q2+1);l3=length(V3[,1]);for(i3=1,l3,q3=V3[i3,1];if(q3==p,W=[p,q1,q2]))));W}
Comments