A348006 Largest increment in the trajectory from n to 1 in the Collatz map (or 3x+1 problem), or -1 if no such trajectory exists.
0, 0, 11, 0, 11, 11, 35, 0, 35, 11, 35, 11, 27, 35, 107, 0, 35, 35, 59, 11, 43, 35, 107, 11, 59, 27, 6155, 35, 59, 107, 6155, 0, 67, 35, 107, 35, 75, 59, 203, 11, 6155, 43, 131, 35, 91, 107, 6155, 11, 99, 59, 155, 27, 107, 6155, 6155, 35, 131, 59, 203, 107
Offset: 1
Examples
a(3) = 11 because the trajectory starting at 3 is 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1, and the largest increment (from 5 to 16) is 11. a(4) = 0 because there are only halving steps in the Collatz trajectory starting at 4.
Programs
-
Mathematica
nterms=100;Table[c=n;mr=0;While[c>1,If[OddQ[c],mr=Max[mr,2c+1];c=3c+1,c/=2^IntegerExponent[c,2]]];mr,{n,nterms}]
-
PARI
a(n)=n>>=valuation(n,2); my(r); while(n>1, my(t=2*n+1); n+=t; n>>=valuation(n,2); if(t>r, r=t)); r \\ Charles R Greathouse IV, Oct 25 2022
-
Python
def A348006(n): c, mr = n, 0 while c > 1: if c % 2: mr = max(mr, 2*c+1) c = 3*c+1 else: c //= 2 return mr print([A348006(n) for n in range(1, 100)])
Comments