cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348029 a(n) = A003959(n) - sigma(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 12, 3, 0, 0, 8, 0, 0, 0, 50, 0, 9, 0, 12, 0, 0, 0, 48, 5, 0, 24, 16, 0, 0, 0, 180, 0, 0, 0, 53, 0, 0, 0, 72, 0, 0, 0, 24, 18, 0, 0, 200, 7, 15, 0, 28, 0, 72, 0, 96, 0, 0, 0, 48, 0, 0, 24, 602, 0, 0, 0, 36, 0, 0, 0, 237, 0, 0, 20, 40, 0, 0, 0, 300, 135, 0, 0, 64, 0, 0, 0, 144, 0, 54, 0, 48, 0
Offset: 1

Views

Author

Antti Karttunen, Oct 20 2021

Keywords

Comments

Inverse Möbius transform of A348030.

Crossrefs

Cf. A000203, A003959, A005117 (positions of zeros), A013661, A065488, A348030.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - DivisorSigma[1, n]; Array[a, 100] (* Amiram Eldar, Oct 20 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348029(n) = (A003959(n)-sigma(n));

Formula

a(n) = A003959(n) - A000203(n).
a(n) = Sum_{d|n} A348030(d).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p^2-p-1)) - Pi^2/6 = A065488 - A013661 = 1.0291786... . - Amiram Eldar, May 29 2025