cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A348029 a(n) = A003959(n) - sigma(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 12, 3, 0, 0, 8, 0, 0, 0, 50, 0, 9, 0, 12, 0, 0, 0, 48, 5, 0, 24, 16, 0, 0, 0, 180, 0, 0, 0, 53, 0, 0, 0, 72, 0, 0, 0, 24, 18, 0, 0, 200, 7, 15, 0, 28, 0, 72, 0, 96, 0, 0, 0, 48, 0, 0, 24, 602, 0, 0, 0, 36, 0, 0, 0, 237, 0, 0, 20, 40, 0, 0, 0, 300, 135, 0, 0, 64, 0, 0, 0, 144, 0, 54, 0, 48, 0
Offset: 1

Views

Author

Antti Karttunen, Oct 20 2021

Keywords

Comments

Inverse Möbius transform of A348030.

Crossrefs

Cf. A000203, A003959, A005117 (positions of zeros), A013661, A065488, A348030.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - DivisorSigma[1, n]; Array[a, 100] (* Amiram Eldar, Oct 20 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348029(n) = (A003959(n)-sigma(n));

Formula

a(n) = A003959(n) - A000203(n).
a(n) = Sum_{d|n} A348030(d).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p^2-p-1)) - Pi^2/6 = A065488 - A013661 = 1.0291786... . - Amiram Eldar, May 29 2025

A348036 a(n) = gcd(n, A003968(n)), where A003968 is multiplicative with a(p^e) = p*(p+1)^(e-1).

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 36, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 2, 65, 66, 67, 34, 69, 70, 71, 72, 73, 74, 15, 38, 77, 78, 79, 10, 3, 82, 83, 42
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2021

Keywords

Crossrefs

Differs from A007947 at the positions given by A347960.

Programs

  • Mathematica
    f[p_, e_] := p*(p + 1)^(e - 1); a[n_] := GCD[n, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Oct 20 2021 *)
  • PARI
    A003968(n) = { my(f=factor(n)); for (i=1, #f~, p= f[i, 1]; f[i, 1] = p*(p+1)^(f[i, 2]-1); f[i, 2] = 1); factorback(f); }
    A348036(n) = gcd(n, A003968(n));

Formula

a(n) = gcd(n, A003968(n)).
a(n) = gcd(n, A348030(n)) = gcd(A003968(n), A348030(n)).
a(n) = n / A348037(n) = A003968(n) / A348038(n).
a(n) = A007947(n) * A348039(n).

A348499 Numbers k such that A003968(k) is a multiple of k, where A003968 is multiplicative with a(p^e) = p*(p+1)^(e-1).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2021

Keywords

Comments

This is a subsequence of A333634. See comments in A347892.

Crossrefs

Union of A005117 and A347892 (terms that are not squarefree).
Subsequence of A333634.
Positions of ones in A348037.

Programs

  • Mathematica
    f[p_, e_] := p*(p + 1)^(e - 1); s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[120], Divisible[s[#], #] &] (* Amiram Eldar, Oct 29 2021 *)
  • PARI
    A003968(n) = {my(f=factor(n)); for (i=1, #f~, p= f[i, 1]; f[i, 1] = p*(p+1)^(f[i, 2]-1); f[i, 2] = 1); factorback(f); }
    isA348499(n) = !(A003968(n)%n);
Showing 1-3 of 3 results.