cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348037 a(n) = n / gcd(n, A003968(n)), where A003968 is multiplicative with a(p^e) = p*(p+1)^(e-1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 8, 1, 3, 1, 2, 1, 1, 1, 4, 5, 1, 9, 2, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 8, 7, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 2, 1, 1, 3, 32, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 5, 2, 1, 1, 1, 8, 27, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 16, 1, 7, 3, 5, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2021

Keywords

Crossrefs

Differs from A003557 at the positions given by A347960.
Cf. A003959, A003968, A333634, A348038, A348039, A348499 (positions of 1's).

Programs

  • Mathematica
    f[p_, e_] := p*(p + 1)^(e - 1); a[n_] := n / GCD[n, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Oct 20 2021 *)
  • PARI
    A003968(n) = { my(f=factor(n)); for (i=1, #f~, p= f[i, 1]; f[i, 1] = p*(p+1)^(f[i, 2]-1); f[i, 2] = 1); factorback(f); }
    A348037(n) = (n/gcd(n, A003968(n)));

Formula

a(n) = n / A348036(n) = n / gcd(n, A003968(n)).
a(n) = A003557(n) / A348039(n).