cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348042 Square array A(n,k) = the nearest common ancestor of n, k and n*k in Doudna tree (A005940).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 3, 2, 2, 2, 3, 2, 1, 1, 2, 2, 2, 3, 3, 2, 2, 2, 1, 1, 2, 2, 4, 3, 2, 3, 4, 2, 2, 1, 1, 2, 3, 4, 2, 3, 3, 2, 4, 3, 2, 1, 1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 27 2021

Keywords

Comments

Array is symmetric and is read by antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Examples

			The top left 17x17 corner of the array:
  n/k |  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17
------+-------------------------------------------------------------
    1 |  1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,
    2 |  1, 2, 2, 2, 2, 2, 2, 2, 2,  2,  2,  2,  2,  2,  2,  2,  2,
    3 |  1, 2, 2, 2, 3, 2, 3, 2, 2,  3,  3,  2,  3,  3,  3,  2,  3,
    4 |  1, 2, 2, 4, 2, 2, 2, 4, 4,  2,  2,  2,  2,  2,  2,  4,  2,
    5 |  1, 2, 3, 2, 2, 3, 3, 2, 2,  2,  5,  3,  5,  3,  2,  2,  5,
    6 |  1, 2, 2, 2, 3, 2, 3, 2, 2,  3,  3,  2,  3,  3,  6,  2,  3,
    7 |  1, 2, 3, 2, 3, 3, 2, 2, 2,  3,  3,  3,  5,  2,  3,  2,  7,
    8 |  1, 2, 2, 4, 2, 2, 2, 8, 4,  2,  2,  2,  2,  2,  2,  8,  2,
    9 |  1, 2, 2, 4, 2, 2, 2, 4, 4,  2,  2,  2,  2,  2,  2,  4,  2,
   10 |  1, 2, 3, 2, 2, 3, 3, 2, 2,  2,  5,  3,  5,  3,  2,  2,  5,
   11 |  1, 2, 3, 2, 5, 3, 3, 2, 2,  5,  2,  3,  3,  3,  3,  2,  5,
   12 |  1, 2, 2, 2, 3, 2, 3, 2, 2,  3,  3,  2,  3,  3,  6,  2,  3,
   13 |  1, 2, 3, 2, 5, 3, 5, 2, 2,  5,  3,  3,  2,  5,  3,  2,  3,
   14 |  1, 2, 3, 2, 3, 3, 2, 2, 2,  3,  3,  3,  5,  2,  3,  2,  7,
   15 |  1, 2, 3, 2, 2, 6, 3, 2, 2,  2,  3,  6,  3,  3,  2,  2,  3,
   16 |  1, 2, 2, 4, 2, 2, 2, 8, 4,  2,  2,  2,  2,  2,  2, 16,  2,
   17 |  1, 2, 3, 2, 5, 3, 7, 2, 2,  5,  5,  3,  3,  7,  3,  2,  2,
		

Crossrefs

Cf. A005940, A156552, A348041, A348043, A348044 (main diagonal).

Programs

  • PARI
    \\ Needs also code from A348041:
    up_to = 105;
    A348042sq(row,col) = A348041sq(row*col,A348041sq(row,col));
    A348042list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A348042sq(col,(a-(col-1))))); (v); };
    v348042 = A348042list(up_to);
    A348042(n) = v348042[n];

Formula

A(n, k) = A(k, n).
A(n, k) = A348041(n*k, A348041(n, k)).
A(n, k) = A348041(n, A348043(k, n)) = A348041(k, A348043(n, k)).
For any two squares s=u^2 and t=v^2, A(s, t) is a square also.