A348067 Matula-Goebel tree number of tree n with a new leaf added below each existing vertex.
2, 6, 26, 18, 202, 78, 122, 54, 338, 606, 2462, 234, 794, 366, 2626, 162, 1346, 1014, 502, 1818, 1586, 7386, 4546, 702, 20402, 2382, 4394, 1098, 8914, 7878, 43954, 486, 32006, 4038, 12322, 3042, 2962, 1506, 10322, 5454, 12178, 4758, 4946, 22158, 34138, 13638
Offset: 1
Keywords
Examples
tree n=6 tree a(6) = 78 R R___ root R | \ |\ \ A B A @ B new vertices | |\ \ "@" below each C C @ @ existing \ @
Links
Crossrefs
Programs
-
PARI
a(n) = my(f=factor(n)); 2*factorback([prime(self()(primepi(p))) | p<-f[,1]], f[,2]);
Formula
a(n) = 2 * Product_{i=1..k} prime(a(primepi(p[i]))), where n = p[1]*...*p[k] is the prime factorization of n with multiplicity (A027746).
Comments