A348076 Number k such that k and k+1 both have an equal number of even and odd exponents in their prime factorization (A187039).
44, 75, 98, 116, 147, 171, 175, 207, 244, 332, 368, 387, 404, 507, 548, 603, 604, 656, 724, 800, 832, 844, 847, 891, 908, 931, 963, 1052, 1075, 1083, 1124, 1250, 1251, 1323, 1324, 1412, 1467, 1556, 1587, 1675, 1772, 1791, 2096, 2224, 2312, 2348, 2367, 2511, 2523
Offset: 1
Keywords
Examples
44 is a term since 44 = 2^2 * 11 and 44 + 1 = 45 = 3^2 * 5 both have one even and one odd exponent in their prime factorization.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_] := n == 1 || Count[(e = FactorInteger[n][[;; , 2]]), ?OddQ] == Count[e, ?EvenQ]; Select[Range[2500], q[#] && q[# + 1] &]
-
Python
from sympy import factorint def aupto(limit): alst, cond = [], False for nxtk in range(3, limit+2): evenodd = [0, 0] for e in factorint(nxtk).values(): evenodd[e%2] += 1 nxtcond = (evenodd[0] == evenodd[1]) if cond and nxtcond: alst.append(nxtk-1) cond = nxtcond return alst print(aupto(2523)) # Michael S. Branicky, Sep 27 2021
Comments