A348077 Starts of runs of 3 consecutive numbers that have an equal number of even and odd exponents in their prime factorization (A187039).
603, 1250, 1323, 2523, 4203, 4923, 4948, 7442, 10467, 12591, 18027, 20402, 21123, 23823, 31507, 31850, 36162, 40327, 54475, 54511, 55323, 58923, 63747, 64386, 71523, 73204, 79011, 83151, 85291, 88047, 97675, 103923, 104211, 118323, 120787, 122571, 124891, 126927
Offset: 1
Keywords
Examples
603 is a term since 603 = 3^2 * 67, 603 + 1 = 604 = 2^2 * 151 and 603 + 2 = 605 = 5 * 11^2 all have one even and one odd exponent in their prime factorization.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_] := n == 1 || Count[(e = FactorInteger[n][[;; , 2]]), ?OddQ] == Count[e, ?EvenQ]; v = q /@ Range[3]; seq = {}; Do[v = Append[Drop[v, 1], q[k]]; If[And @@ v, AppendTo[seq, k - 2]], {k, 4, 130000}]; seq
-
Python
from sympy import factorint def aupto(limit): alst, condvec = [], [False, False, False] for kp2 in range(4, limit+3): evenodd = [0, 0] for e in factorint(kp2).values(): evenodd[e%2] += 1 condvec = condvec[1:] + [evenodd[0] == evenodd[1]] if all(condvec): alst.append(kp2-2) return alst print(aupto(126927)) # Michael S. Branicky, Sep 27 2021