A348093 Numbers k >= 1 such that there is no pair (x,y) such that x - d(x) = k or y + d(y) = k, where d = A000005 = number of divisors.
8, 20, 36, 40, 67, 68, 79, 88, 100, 116, 117, 131, 132, 134, 140, 156, 164, 167, 180, 185, 196, 204, 228, 244, 252, 268, 276, 284, 300, 308, 312, 321, 324, 341, 348, 370, 372, 379, 388, 401, 405, 408, 420, 425, 436, 439, 453, 460, 476, 479
Offset: 1
Keywords
Examples
k = 8 is a term: there are no x,y such that x - d(x) = 8, y + d(y) = 8.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
With[{max = 480}, Complement[Range[max], Select[Union[Flatten[Table[n + DivisorSigma[0, n]*{-1, 1}, {n, 1, max + 2 + 2*Ceiling[Sqrt[2*max+4]]}]]], # <= max &]]] (* Amiram Eldar, Mar 04 2023 *)
-
PARI
okp(k) = sum(i=1, k, i+numdiv(i) == k) == 0; okm(k) = sum(i=1, 2*k+2, i-numdiv(i) == k) == 0; isok(k) = okp(k) && okm(k); \\ Michel Marcus, Oct 01 2021
Comments