A348142 Square array read by upward antidiagonals in which T(w,p) is the smallest number k whose symmetric representation of sigma(k) consists of p parts with maximum width w occurring in everyone of its p parts.
1, 6, 3, 60, 78, 9, 120, 7620, 1014, 21, 360, 28920, 967740, 12246, 81, 840, 261720, 6969720, 116136420, 171366, 147, 3360, 1422120
Offset: 1
Examples
The 10x8 section of the table T(w,p) with dashes indicating values greater than 120*10^6; rows w denote the common maximum width in all parts and columns p the number of parts in the symmetric representation of sigma(T(w,p)). w\p | 1 2 3 4 5 6 7 8 ... -------------------------------------------------------------------------- 1 | 1 3 9 21 81 147 729 903 2 | 6 78 1014 12246 171366 1922622 28960854 - 3 | 60 7620 967740 116136420 - - - 4 | 120 28920 6969720 - 5 | 360 261720 - 6 | 840 1422120 - 7 | 3360 22622880 - 8 | 2520 12728520 - 9 | 5040 50858640 - 10| 10080 - ... The symmetric representation of sigma for T(2,2) = 78 consists of the two parts (84, 84) of maximum widths (2, 2), and that of T(2,3) = 1014 consists of the three parts (1020, 156, 1020) of maximum widths (2, 2, 2).
Crossrefs
Programs
-
Mathematica
(* function a341969 is defined in A341969 *) a348142[n_, {w_, p_}] := Module[{list=Table[0, {i, w}, {j, p}], k, s, c, u}, Monitor[For[k=1, k<=n, k++, s=Map[Max, Select[SplitBy[a341969[k], #!=0&], #[[1]]!=0&]]; c=Length[s]; u=Union[s]; If[Length[u]==1&&u[[1]]<=w&&c<=p, If[list[[u[[1]], c]]==0, list[[u[[1]], c]]=k]]], list]; list] table=a348142[120000000, {10, 10}] (* 10x10 table; very long computation time *) p[n_] := n-row[n-1](row[n-1]+1)/2 w[n_] := row[n-1]-p[n]+2 Map[table[[w[#], p[#]]]&, Range[23]] (* sequence data *)
Formula
a((w+p-2)(w+p-1)/2 + p) = T(w,p), for all w, p >= 1.
T(w(n),p(n)) = a(n), for all n >= 1, where p(n) = n - r(n-1) * (r(n-1) + 1)/2, w(n) = r(n-1) - p(n) + 2, and r(n) = floor((sqrt(8*n+1) - 1)/2).
Comments