A348156 S_3-primes: let S_3 = {1,4,7,...,3i+1,...}; then an S_3-prime is in S_3 but is not divisible by any elements of S_3 except for itself and 1.
4, 7, 10, 13, 19, 22, 25, 31, 34, 37, 43, 46, 55, 58, 61, 67, 73, 79, 82, 85, 94, 97, 103, 106, 109, 115, 118, 121, 127, 139, 142, 145, 151, 157, 163, 166, 178, 181, 187, 193, 199, 202, 205, 211, 214, 223, 226, 229, 235, 241, 253, 262, 265, 271, 274, 277, 283, 289, 295, 298
Offset: 1
Keywords
Programs
-
Mathematica
nn = 100; Complement[Table[3 k + 1, {k, 1, nn}], Union[Flatten[ Table[Table[(3 k + 1) (3 j + 1), {k, 1, j}], {j, 1, nn}]]]]
-
PARI
isok(m) = ((m % 3)==1) && (#select(x->((x%3)==1), divisors(m)) == 2); \\ Michel Marcus, Oct 06 2021
-
Python
nn = 300 s = [True]*((nn)//3 + 1) for i in range(4, nn, 3): if s[(i-1)//3]: for t in range(4, (nn)//i, 3): s[(i*t-1)//3] = False print([3*i + 1 for i in range(1, (nn + 3)//3) if s[i]])
Comments