cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348164 Number of partitions of n such that 5*(greatest part) = (number of parts).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 5, 5, 7, 8, 10, 11, 15, 16, 20, 22, 26, 28, 35, 38, 46, 52, 62, 70, 85, 95, 112, 127, 148, 166, 195, 219, 254, 288, 332, 375, 435, 489, 562, 635, 726, 817, 936, 1051, 1198, 1348, 1531, 1721, 1957, 2196, 2489
Offset: 1

Views

Author

Seiichi Manyama, Jan 25 2022

Keywords

Comments

Also, the number of partitions of n such that (greatest part) = 5*(number of parts).

Examples

			a(19) = 3 counts these partitions:
[3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 1].
		

Crossrefs

Column 5 of A350879.

Programs

  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Sum[x^(6*k-1) * Product[(1 - x^(5*k+j-1)) / (1 - x^j), {j, 1, k-1}], {k, 1, nmax/6 + 1}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 15 2024 *)
    nmax = 100; p = x^4; s = x^4; Do[p = Normal[Series[p*x^6*(1 - x^(6*k - 1))*(1 - x^(6*k))*(1 - x^(6*k + 1))*(1 - x^(6*k + 2))*(1 - x^(6*k + 3))*(1 - x^(6*k + 4))/((1 - x^(5*k + 4))*(1 - x^(5*k + 3))*(1 - x^(5*k + 2))*(1 - x^(5*k + 1))*(1 - x^(5*k))*(1 - x^k)), {x, 0, nmax}]]; s += p;, {k, 1, nmax/6 + 1}]; Take[CoefficientList[s, x], nmax] (* Vaclav Kotesovec, Oct 16 2024 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(6*k-1)*prod(j=1, k-1, (1-x^(5*k+j-1))/(1-x^j)))))

Formula

G.f.: Sum_{k>=1} x^(6*k-1) * Product_{j=1..k-1} (1-x^(5*k+j-1))/(1-x^j).
a(n) ~ 5 * Pi^5 * exp(Pi*sqrt(2*n/3)) / (9 * 2^(3/2) * n^(7/2)). - Vaclav Kotesovec, Oct 17 2024