cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348175 Irregular table T(n,k) read by rows: T(n,k) = T(n-1,k/2) when k is even and 3*T(n-1,(k-1)/2) + 2^(n-1) when k is odd. T(0,0) = 0 and 0 <= k <= 2^n-1.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 5, 0, 4, 2, 10, 1, 7, 5, 19, 0, 8, 4, 20, 2, 14, 10, 38, 1, 11, 7, 29, 5, 23, 19, 65, 0, 16, 8, 40, 4, 28, 20, 76, 2, 22, 14, 58, 10, 46, 38, 130, 1, 19, 11, 49, 7, 37, 29, 103, 5, 31, 23, 85, 19, 73, 65, 211
Offset: 0

Views

Author

Ryan Brooks, Oct 04 2021

Keywords

Examples

			n\k 0  1  2  3  4  5  6  7
0   0
1   0  1
2   0  2  1  5
3   0  4  2 10  1  7  5 19
		

Crossrefs

Cf. A001047 (right diagonal), A002697 (row sums), A119733.
Cf. A133457 (binary exponents).

Programs

  • Mathematica
    T[0, 0] = 0; T[n_, k_] := T[n, k] = If[EvenQ[k], T[n - 1, k/2], 3*T[n - 1, (k - 1)/2] + 2^(n - 1)]; Table[T[n, k], {n, 0, 5}, {k, 0, 2^n - 1}] // Flatten (* Amiram Eldar, Oct 11 2021 *)
  • PARI
    T(n, k) = if ((n==0) && (k==0), 0, if (k%2, 3*T(n-1,(k-1)/2) + 2^(n-1), T(n-1,k/2)));
    tabf(nn) = for (n=0, nn, for (k=0, 2^n-1, print1(T(n,k), ", ")); print); \\ Michel Marcus, Oct 18 2021
    
  • PARI
    T(n,k) = my(ret=0); for(i=0,n-1, if(bittest(k,n-1-i), ret=3*ret+1<Kevin Ryde, Oct 22 2021

Formula

T(n,k) = T(n-1,k/2) for k being even.
T(n,k) = 3*T(n-1,(k-1)/2) + 2^(n-1) for k being odd.
T(n,k) = 2*T(n-1,k) for 0 <= k <= 2^(n-1) - 1.
T(n,k) = Sum_{i=0..r} 2^(n-1-e[i]) * 3^i where binary expansion k = 2^e[0] + 2^e[1] + ... + 2^e[r] with ascending e[0] < e[1] < ... < e[r] (A133457). - Kevin Ryde, Oct 22 2021