cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348187 Integers m with k digits (for some k) that lie in an interval of k integers and the digits of m are the total number of distinct prime factors of all the integers in that interval.

Original entry on oeis.org

12, 22, 31, 122, 132, 312, 322, 2323, 3312, 14421, 23222, 24243, 33333, 51243, 333424, 342332, 432241, 523233, 1333232, 1432243, 2424341, 2442253, 5134334, 15232343, 24243232, 24424243, 25514234, 26134354, 32334533, 33252335, 33341415, 33343412, 34332425, 43523432, 53224343
Offset: 1

Views

Author

Michel Marcus, Oct 12 2021

Keywords

Examples

			12 is a term because omega([11, 12]) gives [1, 2], the digits of 12.
33333 is a term because omega([33332, 33333, 33334, 33335, 33336]) but also omega([33333, 33334, 33335, 33336, 33337]) both give [3, 3, 3, 3, 3].
		

Crossrefs

Cf. A001221 (omega), A323083 (following), A348266 (preceding).

Programs

  • PARI
    vecn(n) = {my(list = List()); for (k=10^(n-1), 10^n-1-n, my(w = apply(omega, vector(n, i, k+i-1))); my(m = fromdigits(w)); if ((m>=k) && (m<=k+n-1), listput(list, m));); Set(list);}
    lista(nn) = {my(list = List()); for (n=1, nn, my(w=vecn(n)); for (k=1, #w, listput(list, w[k]));); Set(list);}