A348210 Varma's Kosta numbers of semi-standard tableaux: array A(n>=2, k>=0) read by rising antidiagonals.
0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 15, 16, 7, 1, 0, 1, 36, 65, 31, 9, 1, 0, 1, 91, 260, 175, 51, 11, 1, 0, 1, 232, 1085, 981, 369, 76, 13, 1, 0, 1, 603, 4600, 5719, 2661, 671, 106, 15, 1, 0, 1, 1585, 19845, 33922, 19929, 5916, 1105, 141, 17, 1, 0, 1, 4213, 86725, 204687, 151936, 54131, 11516, 1695, 181, 19, 1, 0
Offset: 2
Examples
The array starts in row n=2 with columns k>=0 as: 0 0 0 0 0 0 0 0 ... 1 1 1 1 1 1 1 1 ... 1 3 5 7 9 11 13 15 ... 1 6 16 31 51 76 106 141 ... 1 15 65 175 369 671 1105 1695 ... 1 36 260 981 2661 5916 11516 20385 ... 1 91 1085 5719 19929 54131 124501 254255 ... Antidiagonal rows begin as: 0; 1, 0; 1, 1, 0; 1, 3, 1, 0; 1, 6, 5, 1, 0; 1, 15, 16, 7, 1, 0; 1, 36, 65, 31, 9, 1, 0; 1, 91, 260, 175, 51, 11, 1, 0; 1, 232, 1085, 981, 369, 76, 13, 1, 0; 1, 603, 4600, 5719, 2661, 671, 106, 15, 1, 0;
Links
- G. C. Greubel, Antidiagonals n = 2..52, flattened
- D.-N. Verma, Towards Classifying Finite Point-Set Configurations, 1997, Unpublished. [Scanned copy of annotated version of preprint given to me by the author in 1997. - _N. J. A. Sloane_, Oct 03 2021]
Crossrefs
Programs
-
Magma
A:= func< n,k | (&+[(-1)^(j+1)*Binomial(n,j)*Binomial((n-2*j)*k+n-j-2,n-3)/2 : j in [0..Floor((n-1)/2)]]) >; A348210:= func< n,k | A(n-k,k) >; [A348210(n,k): k in [0..n-2], n in [2..13]]; // G. C. Greubel, Feb 28 2024
-
Maple
A348210 := proc(n,k) local a,j ; a := 0 ; for j from 0 to floor((n-1)/2) do a := a+ (-1)^j *binomial(n,j) *binomial( (n-2*j)*k+n-j-2,n-3) ; end do: -a/2 ; end proc: seq( seq( A348210(d-k,k),k=0..d-2),d=2..12) ;
-
Mathematica
A[n_, k_] := (-1/2)*Sum[(-1)^j*Binomial[n, j]*Binomial[(n - 2*j)*k + n - j - 2, n - 3], {j, 0, Floor[(n - 1)/2]}]; Table[A[n - k, k], {n, 2, 13}, {k, 0, n - 2}] // Flatten (* Jean-François Alcover, Mar 06 2023 *)
-
SageMath
def A(n,k): return sum( (-1)^(j+1)*binomial(n,j)*binomial((n-2*j)*k+n-j-2,n-3) for j in range(1+(n-1)//2) )/2 def A348210(n,k): return A(n-k, k) flatten([[A348210(n,k) for k in range(n-1)] for n in range(2,13)]) # G. C. Greubel, Feb 28 2024
Formula
A(n,k) = (-1/2)*Sum_{j=0..floor((n-1)/2)} (-1)^j *binomial(n,j) *binomial((n-2*j)*k+n-j-2,n-3).
A(7,k) = 1 + 7*k*(k+1)*(11*k^2+11*k+8)/12.
A(8,k) = (2*k+1)*(4*k^2+6*k+3)*(4*k^2+2*k+1)/3.
A(9,k) = 1 + k*(k+1)*(289*k^4+578*k^3+581*k^2+292*k+108)/16.
Comments