cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348210 Varma's Kosta numbers of semi-standard tableaux: array A(n>=2, k>=0) read by rising antidiagonals.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 15, 16, 7, 1, 0, 1, 36, 65, 31, 9, 1, 0, 1, 91, 260, 175, 51, 11, 1, 0, 1, 232, 1085, 981, 369, 76, 13, 1, 0, 1, 603, 4600, 5719, 2661, 671, 106, 15, 1, 0, 1, 1585, 19845, 33922, 19929, 5916, 1105, 141, 17, 1, 0, 1, 4213, 86725, 204687, 151936, 54131, 11516, 1695, 181, 19, 1, 0
Offset: 2

Views

Author

R. J. Mathar, Oct 07 2021

Keywords

Comments

(More characteristic NAME desired.)
Each row is a polynomial in k, which implies that the inverse binomial transformation of each row is a finite sequence and that the row can be represented by a rational generating function (A348211).

Examples

			The array starts in row n=2 with columns k>=0 as:
  0   0    0    0     0     0      0      0 ...
  1   1    1    1     1     1      1      1 ...
  1   3    5    7     9    11     13     15 ...
  1   6   16   31    51    76    106    141 ...
  1  15   65  175   369   671   1105   1695 ...
  1  36  260  981  2661  5916  11516  20385 ...
  1  91 1085 5719 19929 54131 124501 254255 ...
Antidiagonal rows begin as:
  0;
  1,   0;
  1,   1,    0;
  1,   3,    1,    0;
  1,   6,    5,    1,    0;
  1,  15,   16,    7,    1,    0;
  1,  36,   65,   31,    9,    1,   0;
  1,  91,  260,  175,   51,   11,   1,   0;
  1, 232, 1085,  981,  369,   76,  13,   1,  0;
  1, 603, 4600, 5719, 2661,  671, 106,  15,  1,  0;
		

Crossrefs

Cf. A005043 (column k=1), A007043 (k=2), A264608 (k=3), A272393 (k=4), A005408 (row n=4), A005891 (n=5), A005917 (n=6), A348211 (condensed g.f.)

Programs

  • Magma
    A:= func< n,k | (&+[(-1)^(j+1)*Binomial(n,j)*Binomial((n-2*j)*k+n-j-2,n-3)/2 : j in [0..Floor((n-1)/2)]]) >;
    A348210:= func< n,k | A(n-k,k) >;
    [A348210(n,k): k in [0..n-2], n in [2..13]]; // G. C. Greubel, Feb 28 2024
    
  • Maple
    A348210 := proc(n,k)
        local a,j ;
        a := 0 ;
        for j from 0 to floor((n-1)/2) do
                a := a+ (-1)^j *binomial(n,j) *binomial( (n-2*j)*k+n-j-2,n-3) ;
        end do:
        -a/2 ;
    end proc:
    seq( seq( A348210(d-k,k),k=0..d-2),d=2..12) ;
  • Mathematica
    A[n_, k_] := (-1/2)*Sum[(-1)^j*Binomial[n, j]*Binomial[(n - 2*j)*k + n - j - 2, n - 3], {j, 0, Floor[(n - 1)/2]}];
    Table[A[n - k, k], {n, 2, 13}, {k, 0, n - 2}] // Flatten (* Jean-François Alcover, Mar 06 2023 *)
  • SageMath
    def A(n,k): return sum( (-1)^(j+1)*binomial(n,j)*binomial((n-2*j)*k+n-j-2,n-3) for j in range(1+(n-1)//2) )/2
    def A348210(n,k): return A(n-k, k)
    flatten([[A348210(n,k) for k in range(n-1)] for n in range(2,13)]) # G. C. Greubel, Feb 28 2024

Formula

A(n,k) = (-1/2)*Sum_{j=0..floor((n-1)/2)} (-1)^j *binomial(n,j) *binomial((n-2*j)*k+n-j-2,n-3).
A(7,k) = 1 + 7*k*(k+1)*(11*k^2+11*k+8)/12.
A(8,k) = (2*k+1)*(4*k^2+6*k+3)*(4*k^2+2*k+1)/3.
A(9,k) = 1 + k*(k+1)*(289*k^4+578*k^3+581*k^2+292*k+108)/16.