A348224 Lower matching number of the n-triangular honeycomb acute knight graph.
0, 0, 3, 3, 3, 6, 9, 9, 15, 18, 18, 24, 29, 30, 39, 44, 45, 54, 62, 63, 75, 83, 84, 96, 106, 108, 123, 133, 135, 150, 163, 165, 183, 196, 198, 216, 231, 234, 255, 270, 273, 294, 312, 315, 339, 357, 360, 384, 404, 408, 435, 455, 459, 486, 509, 513, 543, 566
Offset: 1
Links
- Stan Wagon, Graph Theory Problems from Hexagonal and Traditional Chess., The College Mathematics Journal, Vol. 45, No. 4, September 2014, pp. 278-287.
- Eric Weisstein's World of Mathematics, Lower Matching Number.
- Eric Weisstein's World of Mathematics, Triangular Honeycomb Acute Knight Graph.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1,0,0,0,0,0,0,0,1,-1,0,-1,1).
Crossrefs
Cf. A289143 (matching number of the n-triangular honeycomb acute knight graph).
Programs
-
Mathematica
LinearRecurrence[{1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1}, {0, 0, 3, 3, 3, 6, 9, 9, 15, 18, 18, 24, 29, 30, 39, 44}, 20] CoefficientList[Series[x^2 (-3 - 3 x^4 - 3 x^6 - 2 x^10 - x^11)/((-1 + x)^3 (1 + x + x^2)^2 (1 + x^3 + x^6 + x^9)), {x, 0, 20}], x]
Formula
G.f.: x^3*(-3-3*x^4-3*x^6-2*x^10-x^11)/((-1+x)^3*(1+x+x^2)^2*(1+x^3+x^6+x^9)).
a(n) = a(n-1)+a(n-3)-a(n-4)+a(n-12)-a(n-13)-a(n-15)+a(n-16).
Extensions
a(16) and beyond from Eric W. Weisstein, Dec 07-08 2024