cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A348273 Noninfinitary superabundant numbers: numbers m such that nisigma(m)/m > nisigma(k)/k for all k < m, where nisigma(m) is the sum of noninfinitary divisors of m (A348271).

Original entry on oeis.org

1, 4, 12, 16, 36, 48, 144, 720, 3600, 25200, 176400, 226800, 1587600, 1940400, 2494800, 17463600, 32432400, 192099600, 227026800, 2497294800, 3632428800, 32464832400, 39956716800
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2021

Keywords

Comments

The least term k with A348271(k)/k > m for m = 1, 2, 3, .... is 36, 3600, 1587600, ...

Crossrefs

Cf. A348271.
Subsequence of A348272.
The noninfinitary version of A004394.
Similar sequences: A002110 (unitary), A037992 (infinitary), A061742 (exponential), A292984, A329882.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; seq = {}; rm = -1; Do[r1 = s[n]/n; If[r1 > rm, rm = r1; AppendTo[seq, n]],{n, 1, 10^6}]; seq

A348629 Nonexponential highly abundant numbers: numbers m such that nesigma(m) > nesigma(k) for all k < m, where nesigma(k) is the sum of nonexponential divisors of n (A160135).

Original entry on oeis.org

1, 6, 10, 12, 18, 24, 30, 42, 48, 54, 60, 78, 84, 90, 96, 120, 168, 192, 210, 240, 270, 312, 330, 360, 384, 420, 480, 630, 672, 840, 960, 1056, 1080, 1248, 1320, 1440, 1560, 1680, 1890, 1920, 2280, 2310, 2400, 2520, 2640, 2688, 3000, 3120, 3240, 3360, 4200, 4320
Offset: 1

Views

Author

Amiram Eldar, Oct 26 2021

Keywords

Comments

The corresponding record values are 1, 6, 8, 10, 15, 30, 42, 54, 58, 60, 78, ... (see the link for more values).

Examples

			The first 6 values of nesigma(k), for k = 1 to 6 are 1, 1, 1, 1, 1 and 6. The record values, 1 and 6, occur at 1 and 6, the first 2 terms of this sequence.
		

Crossrefs

The nonexponential version of A002093.
Similar sequences: A285614, A292983, A327634, A328134, A329883, A348272.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; s[1] = 1; s[n_] := DivisorSigma[1, n] - esigma[n]; seq = {}; sm = -1; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 10^4}]; seq

A349112 Powerful highly abundant numbers: numbers m such that psigma(m) > psigma(k) for all k < m, where psigma(k) is the sum of powerful divisors of k (A183097).

Original entry on oeis.org

1, 4, 8, 16, 27, 32, 64, 72, 108, 128, 144, 200, 216, 256, 288, 392, 400, 432, 576, 648, 800, 864, 1152, 1296, 1728, 1944, 2304, 2592, 3456, 3888, 5184, 6912, 7776, 10000, 10368, 11664, 13824, 15552, 20000, 20736, 23328, 27000, 27648, 31104, 34992, 40000, 41472
Offset: 1

Views

Author

Amiram Eldar, Nov 08 2021

Keywords

Comments

The corresponding record values are 1, 5, 13, 29, 37, 61, 125, 130, 185, 253, ...

Examples

			The first 8 terms of A183097 are 1, 1, 1, 5, 1, 1, 1 and 13. The record values, 1, 5 and 13, occur at 1, 4 and 8, the first 3 terms of this sequence.
		

Crossrefs

A349111 is a subsequence.
Similar sequences: A285614, A292983, A327634, A328134, A329883, A348272.

Programs

  • Mathematica
    f[p_,e_] := (p^(e+1)-1)/(p-1) - p; s[1] = 1; s[n_] := Times @@ f @@@FactorInteger[n]; seq = {}; sm = 0; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 10^5}]; seq
Showing 1-3 of 3 results.