A348306 List of Agathokakological Numbers "k": string of digits of the juxtaposition of the prime factors of k has the same length as k but these digits do not appear in k.
10, 14, 21, 49, 106, 111, 118, 129, 134, 146, 158, 161, 166, 177, 201, 219, 249, 259, 267, 329, 343, 413, 511, 553, 623, 1011, 1029, 1046, 1077, 1081, 1101, 1106, 1114, 1119, 1138, 1149, 1167, 1186, 1227, 1299, 1318, 1354, 1358, 1363, 1418, 1454, 1466, 1538, 1541, 1546, 1561, 1589, 1591
Offset: 1
Examples
158 = 2 * 79 since {2,7,9} do not appear in {1,5,8} and both have 3 digits.
Links
- Samuel Harkness, Table of n, a(n) for n = 1..6388
- Samuel Harkness, MATLAB
- Samuel Harkness, LogLogGraph
- Samuel Harkness, PROOFS
Crossrefs
Programs
-
Mathematica
q[n_] := Module[{d = IntegerDigits[n], f = FactorInteger[n]}, Length[d] == Plus @@ ((Last[#]*IntegerLength[First[#]]) & /@ f ) && Intersection[d, Join @@ IntegerDigits[f[[;; , 1]]]] == {}]; Select[Range[1600], q] (* Amiram Eldar, Oct 12 2021 *)
-
PARI
digsf(n) = my(f=factor(n), list=List()); for (k=1, #f~, my(dk=digits(f[k,1])); for (i=1, f[k,2], for (j=1, #dk, listput(list, dk[j])))); Vec(list); isokd(m) = my(df=digsf(m), d=digits(m)); (#df == #d) && (#setintersect(Set(df), Set(d)) == 0); \\ Michel Marcus, Oct 11 2021
-
Python
from sympy import factorint def ok(n): s, f = str(n), factorint(n) pfd = set("".join(str(p) for p in f)) if set(s) & pfd != set(): return False return len(s) == sum(len(str(p))*f[p] for p in f) print(list(filter(ok, range(1601)))) # Michael S. Branicky, Oct 11 2021
Comments