A348319 Perfect powers m^k, k >= 2 that are palindromes while m is not a palindrome.
676, 69696, 94249, 698896, 5221225, 6948496, 522808225, 617323716, 942060249, 10662526601, 637832238736, 1086078706801, 1230127210321, 1615108015161, 4051154511504, 5265533355625, 9420645460249, 123862676268321, 144678292876441, 165551171155561, 900075181570009
Offset: 1
Examples
676 = 26^2, 10662526601 = 2201^3, 12120030703002121 = 110091011^2 are terms.
References
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Revised Edition), Penguin Books, 1997, entry 10662526601, page 188.
Links
- Michael Keith, Classification and enumeration of palindromic squares, J. Rec. Math., Vol. 22, No. 2 (1990), pp. 124-132. [Annotated scanned copy]. See foot of page 130.
- Gustavus J. Simmons, Palindromic Powers, J. Rec. Math., Vol. 3, No. 2 (1970), pp. 93-98 [Annotated scanned copy]
Crossrefs
Programs
-
Mathematica
seq[max_] := Module[{m = Floor@Sqrt[max], s = {}, n, p}, Do[If[PalindromeQ[k], Continue[]]; n = Floor@Log[k, max]; Do[If[PalindromeQ[(p = k^j)], AppendTo[s, p]], {j, 2, n}], {k, 1, m}]; Union[s]]; seq[10^10] (* Amiram Eldar, Oct 12 2021 *)
-
PARI
ispal(x) = my(d=digits(x)); d == Vecrev(d); \\ A002113 lista(nn) = {my(list = List()); for (k=2, sqrtint(nn), if (!ispal(k), my(q = k^2); until (q > nn, if (ispal(q), listput(list, q)); q *= k;););); vecsort(list,,8);} \\ Michel Marcus, Oct 20 2021
-
Python
def ispal(n): s = str(n); return s == s[::-1] def aupto(limit): aset, m, mm = set(), 10, 100 while mm <= limit: if not ispal(m): mk = mm while mk <= limit: if ispal(mk): aset.add(mk) mk *= m mm += 2*m + 1 m += 1 return sorted(aset) print(aupto(10**13)) # Michael S. Branicky, Oct 12 2021
Extensions
a(18)-a(21) from Amiram Eldar, Oct 12 2021
Comments