cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A348315 a(n) = Sum_{k=0..n} binomial(n^2 - k,n*k).

Original entry on oeis.org

1, 1, 4, 64, 4382, 1357136, 1597653852, 8389021518585, 164828345435877580, 14256525628649472111712, 4602970880920727147946847283, 6484132480933772335644792339409450, 34112054985056318746734374876035089268523
Offset: 0

Views

Author

Seiichi Manyama, Oct 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Binomial[n^2 - k, n*k], {k, 0, n}]; Array[a, 13, 0] (* Amiram Eldar, Oct 12 2021 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n^2-k, n*k));
    
  • PARI
    a(n) = polcoef((1-x)^(n-1)/((1-x)^n-x^(n+1)+x*O(x^n^2)), n^2);

Formula

a(n) = A306680(n^2,n) = [x^(n^2)] (1-x)^(n-1)/((1-x)^n - x^(n+1)).
a(n) ~ c * 2^(1/2 - n/2 + n^2) / (sqrt(Pi)*exp(1/8)*n), where c = Sum_{m = -oo..+oo} 1/(2^m * exp(m*(2*m+1))) = 1.77058122254033174512511... if n is even and c = Sum_{m = -oo..+oo} 1/(2^(m + 1/2) * exp((m+1)*(2*m+1))) = 1.81629595919505881855931... if n is odd. - Vaclav Kotesovec, Oct 12 2021

A348321 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(n*(n-k),n*k).

Original entry on oeis.org

1, 1, 0, -19, -493, -12500, 2110381, 2291797033, 2190576317924, 641690166054149, -51808237792071009216, -1670420776971967146820397, -51706433129693385388017540008, 3622699946475084834038607930411332, 5598748000229343046813449019221837072281
Offset: 0

Views

Author

Seiichi Manyama, Oct 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^k * Binomial[n*(n - k), n*k], {k, 0, n}]; Array[a, 15, 0] (* Amiram Eldar, Oct 12 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n*(n-k), n*k));
    
  • PARI
    a(n) = if(n==0, 1, polcoef((1-x)^(n-1)/((1-x)^n+x^(2*n)+x*O(x^n^2)), n^2));

Formula

a(n) = [x^(n^2)] (1-x)^(n-1)/((1-x)^n + x^(2*n)) for n > 0.
Showing 1-2 of 2 results.