A348341 a(n) is the number of noninfinitary divisors of n.
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 6, 1, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 2, 3, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 2, 2, 0, 0, 0, 6, 3, 0, 0, 4, 0, 0, 0
Offset: 1
Keywords
Examples
a(4) = 1 since 4 has one noninfinitary divisor, 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Infinitary Divisor.
Crossrefs
Programs
-
Mathematica
a[1] = 0; a[n_] := DivisorSigma[0, n] - Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[;; , 2]]]; Array[a, 100]
-
PARI
A348341(n) = (numdiv(n)-factorback(apply(a -> 2^hammingweight(a), factorint(n)[, 2]))); \\ Antti Karttunen, Oct 13 2021
Formula
a(n) = 0 if and only if the number of divisors of n is a power of 2, (i.e., n is in A036537).
a(n) > 0 if and only if the number of divisors of n is not a power of 2, (i.e., n is in A162643).
Sum_{k=1..n} a(k) ~ c * n * log(n), where c = (1 - 2 * A327576) = 0.266749... . - Amiram Eldar, Dec 09 2022