A348359 Decimal expansion of the nontrivial number x for which x^phi = phi^x, where phi is the golden ratio (1+sqrt(5))/2.
6, 0, 5, 5, 7, 2, 2, 0, 9, 1, 0, 2, 4, 7, 4, 1, 0, 0, 2, 1, 2, 6, 6, 3, 9, 1, 1, 7, 5, 8, 3, 1, 4, 9, 7, 3, 1, 6, 8, 3, 8, 2, 8, 7, 5, 3, 7, 8, 3, 6, 7, 7, 7, 4, 3, 9, 4, 9, 9, 6, 7, 7, 3, 5, 2, 8, 1, 8, 7, 9, 7, 4, 4, 8, 5, 2, 3, 5, 8, 1, 4, 7, 9, 3, 8, 9, 4, 6, 6, 6, 0, 7, 4, 2, 8, 1, 7, 8, 9, 4, 7, 8, 9, 4, 5, 7
Offset: 1
Examples
6.055722091024741002126639117583149731683828... x^phi = phi^x = 18.431940924839652158136364051482054378959672... .
Links
- Wikipedia, Gelfond-Schneider theorem
Crossrefs
Programs
-
Mathematica
RealDigits[x/.FindRoot[x^GoldenRatio==GoldenRatio^x,{x,6},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Dec 09 2024 *)
Extensions
Prior Mathematica program replaced by Harvey P. Dale, Dec 09 2024
Comments